Cho đường tròn (C): x^2 + y^2 +10x-8y+1=0 và d:-x+y-5=0
a) Qua điểm M thuộc d kẻ tiếp tuyến MA,MB
Tìm M sao cho diện tích tam giác IAB lớn nhất (I là tâm đường tròn)
b) Tim P thuộc d sao cho diện tích PAI=3√10, A tiếp điểm các tiếp tuyến từ P.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường tròn (C) tâm \(I\left(1;-2\right)\) bán kính \(R=3\)
a. Đường thẳng cắt đường tròn tại 2 điểm pb khi:
\(d\left(I;d\right)< R\Leftrightarrow\dfrac{\left|\sqrt{2}-2m+1-\sqrt{2}\right|}{\sqrt{2+m^2}}< 3\)
\(\Leftrightarrow\left(2m-1\right)^2< 9\left(m^2+2\right)\)
\(\Leftrightarrow8m^2+4m+17>0\) (luôn đúng)
Vậy đường thẳng luôn cắt đường tròn tại 2 điểm pb với mọi m
b. \(S_{IAB}=\dfrac{1}{2}IA.IB.sin\widehat{AIB}=\dfrac{1}{2}R^2.sin\widehat{AIB}\le\dfrac{1}{2}R^2\) do \(sin\widehat{AIB}\le1\)
Dấu "=" xảy ra khi \(sin\widehat{AIB}=1\Rightarrow\Delta IAB\) vuông cân tại I
\(\Rightarrow d\left(I;d\right)=\dfrac{R}{\sqrt{2}}\Leftrightarrow\dfrac{\left|2m-1\right|}{\sqrt{m^2+2}}=\dfrac{3}{\sqrt{2}}\)
\(\Leftrightarrow m^2+8m+16=0\Rightarrow m=-4\)
Diện tích toàn phần của khối nhựa hình lập phương là:
10 x 10 x 6 = 600 (cm2)
Cạnh khối gỗ hình lập phương là:
10 : 2 = 5 (cm)
Diện tích toàn phần của khối gỗ hình lập phương là:
5 x 5 x 6 = 150 (cm2)
Diện tích toàn phần của khối nhựa gấp diện tích toàn phần của khối gấp số lần là:
600 : 150 = 4 (lần)
a, 700 góc nào bạn ?
b, Vì AB là tiếp tuyến (O) => ^ABO = 900
AO giao BC = K
AB = AC ; OB = OC = R
Vậy OA là đường trung trực đoạn BC
Xét tam giác ABO vuông tại B, đường cao BK
Áp dụng định lí Pytago tam giác ABO vuông tại B
\(AB=\sqrt{AO^2-BO^2}=\sqrt{16-4}=2\sqrt{3}\)cm
Áp dụng hệ thức : \(BK.AO=BO.AB\Rightarrow BK=\frac{BO.AB}{AO}=\frac{4\sqrt{3}}{4}=\sqrt{3}\)cm
Vì AO là đường trung trực => \(BC=2KB=2\sqrt{3}\)cm
Chu vi tam giác ABC là :
\(P_{ABC}=AB+AC+BC=2AB+BC=4\sqrt{3}+2\sqrt{3}=6\sqrt{3}\)cm
Đường tròn tâm \(I\left(-5;4\right)\) bán kính \(R=2\sqrt{10}\)
Ta có: \(S_{IAB}=\frac{1}{2}IA.IB.sin\widehat{AIB}=\frac{1}{2}R^2.sin\widehat{AIB}\le\frac{1}{2}R^2\)
\(\Rightarrow S_{max}\) khi \(sin\widehat{AIB}=1\Leftrightarrow AI\perp BI\Rightarrow AB=R\sqrt{2}=4\sqrt{5}\)
Khi đó \(MAIB\) là hình vuông
\(\Rightarrow IM=AB=4\sqrt{5}\)
Do M thuộc d nên tọa độ có dạng: \(M\left(m;m+5\right)\Rightarrow\overrightarrow{IM}=\left(m+5;m+1\right)\)
\(\Rightarrow\left(m+5\right)^2+\left(m+1\right)^2=80\)
\(\Leftrightarrow m^2+6m-27=0\Rightarrow\left[{}\begin{matrix}m=3\\m=-9\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}M\left(3;8\right)\\M\left(-9;-4\right)\end{matrix}\right.\)
b/ Gọi \(P\left(a;a+5\right)\Rightarrow\overrightarrow{IP}=\left(a+5;a+1\right)\)
Ta có: \(S_{PAI}=\frac{1}{2}AI.AP=\frac{1}{2}R.\sqrt{IP^2-R^2}=3\sqrt{10}\)
\(\Leftrightarrow\sqrt{10}.\sqrt{IP^2-40}=3\sqrt{10}\)
\(\Leftrightarrow IP^2=49\Leftrightarrow\left(a+5\right)^2+\left(a+1\right)^2=49\)
\(\Leftrightarrow2a^2+12a-23=0\Rightarrow a=\frac{-6\pm\sqrt{82}}{2}\Rightarrow P...\)