Cho( o, r) và một điểm A cố định nằm ngoài đường tròn từ A vẽ hai tiếp tuyến AB AC (A, C là hai tiếp điểm vẽ cát tuyến AMN thay đổi của O (M nằm giữa A, N) . Từ M kẻ tiếp tuyến Với O cắt AB AC thứ tự tại P, Q. Tìm vị trí cát tuyến AMN để BP+CQ đạt giá trị nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc OIA+góc OCA=180 độ
=>OIAC nội tiếp
b: Gọi giao của DC và OA là H
=>BC vuông góc OA tại H
Xét ΔOHD vuông tại H và ΔOIA vuông tại I có
góc HOD chung
=>ΔOHD đồng dạng với ΔOIA
=>OH*OA=OI*OD
=>OI*OD=R^2
a) Xét tứ giác ABOC có
\(\widehat{ABO}\) và \(\widehat{ACO}\) là hai góc đối
\(\widehat{ABO}+\widehat{ACO}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABO vuông tại B có BH là đường cao ứng với cạnh huyền OA, ta được:
\(AH\cdot AO=AB^2\)(1)
Xét (O) có
\(\widehat{ABD}\) là góc tạo bởi tiếp tuyến BA và dây cung BD
\(\widehat{BED}\) là góc nội tiếp chắn \(\stackrel\frown{BD}\)
Do đó: \(\widehat{ABD}=\widehat{BED}\)(Hệ quả góc tạo bởi tiếp tuyến và dây cung)
hay \(\widehat{ABD}=\widehat{AEB}\)
Xét ΔABD và ΔAEB có
\(\widehat{ABD}=\widehat{AEB}\)
\(\widehat{BAD}\) chung
Do đó: ΔABD∼ΔAEB(g-g)
Suy ra: \(\dfrac{AB}{AE}=\dfrac{AD}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AB^2=AE\cdot AD\)(2)
Từ (1) và (2) suy ra \(AH\cdot AO=AD\cdot AE\)(đpcm)
a: Xét ΔOIL vuông tại I và ΔOHA vuông tại H có
góc IOL chung
=>ΔOIL đồng dạng với ΔOHA
=>OI/OH=OL/OA
=>OL*OH=OI*OA=R^2
b: AM*AN=AI*AO
=>AM/AO=AI/AN
=>ΔAMI đồng dạng với ΔAON
=>góc AMI=góc AON
=>góc IMN+góc ION=180 độ
=>IMNO nội tiếp
=>góc MIN=góc MON=2*góc MCN
PQ nhỏ nhất khi nào