K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2021

Xét tứ giác AEHF có 

\(\widehat{AEH}+\widehat{AFH}=180^0\)

Do đó: AEHF là tứ giác nội tiếp

hay A,E,H,F cùng thuộc 1 đường tròn

AH
Akai Haruma
Giáo viên
18 tháng 11 2021

Lời giải:
a. Áp dụng hệ thức lượng trong tam giác vuông:

$AM.AB=AH^2$
$AN.AC=AH^2$

$\Rightarrow AM.AB=AN.AC$ (đpcm)

b.

Vì $AM.AB=AN.AC\Rightarrow \frac{AM}{AN}=\frac{AC}{AB}$

Xét tam giác $AMN$ và $ACB$ có:

$\widehat{A}$ chung

$\frac{AM}{AN}=\frac{AC}{AB}$ (cmt)

$\Rightarrow \triangle AMN\sim \triangle ACB$ (c.g.c)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
18 tháng 11 2021

Hình vẽ:

20 tháng 9 2015

Xét tứ giác AMHN có góc ANM = góc AHM (1) (2 góc trong tứ giác nội tiếp cùng nhìn xuống cạnh AM)

Mà góc AHM = góc B = 90o – BHM (2)

(1)(2) => góc ANM = góc B

Xét tam giác ANM và tam giác ABC có:

Góc A chung

Góc ANM = góc B

ð       tam giác ANM đồng dạng tam giác ABC (g – g)

ð       AN/AB = AM/AC

ð       AN.AC = AB.AM

Xét ΔAHB vuông tại H có HE là đường cao

nên AE*AB=AH^2

Xét ΔAHC vuông tại H có HD là đường cao

nên AD*AC=AH^2

=>AE*AB=AD*AC
=>AE/AC=AD/AB

mà góc DAE chung

nên ΔAED đồng dạng với ΔACB

NV
19 tháng 9 2021

Áp dụng hệ thức lượng trong tam giác vuông ABH với đường cao BM:

\(AH^2=AM.AB\) (1)

Áp dụng hệ thức lượng trong tam giác vuông ACH với đường cao CN:

\(AH^2=AN.AC\) (2)

(1);(2)\(\Rightarrow AM.AB=AN.AC\)

NV
19 tháng 9 2021

undefined

12 tháng 3 2022

a, Xét tứ giác ADHE ta có 

^ADH + ^AEH = 1800

mà 2 góc này đối 

Vậy tứ giác ADHE là tứ giác nt 1 đường tròn 

b, Ta có \(AH^2=AD.AB;AH^2=AE.AC\) ( hệ thức lượng ) 

\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)Xét tam giác ADE và tam giác ACB 

có ^A _ chung ; AD/AC = AE/AB 

Vậy tam giác ADE ~ tam giác ACB (g.g) 

=> ^ADE = ^ACB 

mà ^ADE là góc ngoài đỉnh D 

Vậy tứ giác BDEC nt 1 đường tròn

12 tháng 3 2022

bạn giúp mk làm luôn 2 hai bài kia đc ko