Trong mặt phẳng Oxy, cho đường thẳng có phương trình 8x-6y-1=0. Tìm vecto pháp tuyến của đường thẳng đã cho sao cho độ dài vecto đó bằng 5 và tung độ là một số dương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
(d) biến thành chính nó khi vecto tịnh tiến cùng phương với (d). Mà (d) có một VTCP là 1 ; 2
Gọi \(M\left(x;y\right)\) là 1 điểm bất kì thuộc \(\Delta\Rightarrow x+2y-1=0\) (1)
Gọi \(M'\left(x';y'\right)\) là ảnh của M qua phép tịnh tiến \(\overrightarrow{v}\Rightarrow M'\in\Delta'\)
\(\left\{{}\begin{matrix}x'=x+1\\y'=y-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=x'-1\\y=y'+1\end{matrix}\right.\)
Thế vào (1):
\(x'-1+2\left(y'+1\right)-1=0\)
\(\Leftrightarrow x'+2y'=0\)
Hay phương trình \(\Delta'\) có dạng: \(x+2y=0\)
c) Đường thẳng d có vecto pháp tuyến là n→(1;-2) nên 1 vecto chỉ phương của d là(2; 1)
=> Vecto v→ không cùng phương với vecto chỉ phương của đường thẳng d
=> Qua phép tịnh tiến v→ biến đường thẳng d thành đường thẳng d’ song song với d.
Nên đường thẳng d’ có dạng : x- 2y + m= 0
Lại có B(-1; 1) d nên B’(-2;3) d’
Thay tọa độ điểm B’ vào phương trình d’ ta được:
-2 -2.3 +m =0 ⇔ m= 8
Vậy phương trình đường thẳng d’ là:x- 2y + 8 = 0
Giao của d với trục \(Ox\) là điểm \(A\left(3;0\right)\). Phép tịnh tiến phải tìm có vectơ tịnh tiến \(\overrightarrow{v}=\overrightarrow{AO}=\left(-3;0\right)\). Đường thẳng d' song song với d đi qua gốc tọa độ nên nó có phương trình \(3x-y=0\)
Đường thẳng d nhận \(\left(8;-6\right)=2\left(4;-3\right)\) là 1 vtpt nên cũng nhận các vecto có dạng \(\left(4k;-3k\right)\) với \(k\ne0\) là vtpt
\(\left(4k\right)^2+\left(-3k\right)^2=25\)
\(\Leftrightarrow25k^2=25\Rightarrow\left[{}\begin{matrix}k=1\\k=-1\end{matrix}\right.\)
- Với \(k=1\) ta được vecto \(\left(4;-3\right)\) tung độ âm (loại)
- Với \(k=-1\) ta được vecto \(\left(-4;3\right)\) thỏa mãn