Hai số nguyên tố sinh đôi là 2 số lẻ liên tiếp . Chứng minh rằng số tự nhiên lớn hơn 3 nằm giữa 2 số nguyên tố sinh đôi thì chia hết cho 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Ta c/m rằng các số nguyên tố lớn hơn 3 luôn có dạng 6k+1, 6k+5, 6k-1.
- Số nguyên tố chia cho 6 sẽ có 1 trong các số dư là 0,1,2,3,4,5.
+ Vì số nguyên tố lẻ nên không chia hết cho 2=>không thể có dạng 6k, 6k+2, 6k+4. Mà số nguyên tố lớn 3 nên cũng không chia hết cho 3
=>Số nguyên tố cũng không thể có dạng 6k+3.
- Vậy số nguyên tố có dạng 6k+1, 6k+5.
- Ta thấy: 6k+5-6=6k-1
mà 6k+5-6=6(k-1)+5 luôn là số nguyên tố nên 6k-1 cũng là số nguyên tố.
=> Số nguyên tố sinh đôi luôn có 2 dạng là 6k+1 và 6k-1.
=> Số chính giữa 2 số nguyên tố sinh đôi có dạng 6k luôn chia hết cho 6.
Gọi 2 số nguyên tố sinh đôi là p và p+ 2. Chứng minh rằng p+1 chia hết cho 2 và3
gọi 2 số nguyên tố sinh đôi là n và n+2.vây sô tn nằm giữa 2 số đó la n+1
n là số nguyên tố lớn hơn 3 nên n lẻ.=> n chẵn=>n+1 chia hết cho 2
mặt khác n n+1 n+2 là 3 số tự nguyên liên tiếp .do n và n+2 không chia hết cho 3 nên n+1 phải chia hết cho 3
n+1 chia hết cho cả 2 và 3 nên n+1 chia hêt cho 6.vậy.....
Giả sửa là stn lớn hơn 4 nằm giữa 2 snt sinh đôi
=> a là số chẵn => a chia hết cho 2
Mặt khác, vì trong 3 stn liên tiếp luôn có 1 số chia hết cho 3 nên a chia hết cho 3 ( vì số liền trước và liền sau là các snt >3 nên ko chia hết cho 3 )
Vậy a chia hết cho 2x3 hay a chia hết cho 6
Gọi hai số nguyên tố sinh đôi là p và p+ 1 (p > 3), số tự nhiên nằm giữa hai số nguyên tố đó là p + 2.
Vì: p, p + 1, p + 2 là 3 số tự nhiên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3, mà p, p + 2 là hai số nguyên tố nên không chia hết cho 2 và 3 suy ra p + 1 chia hết cho 2 và 3 hay p + 1 chia hết cho 6.
Vậy số tự nhiên lớn hơn 3 nằm giữa hai số nguyên tố sinh đôi thì chia hết cho 6.
gọi hai số đó là a;a+2,số nằm giữa là a+1.
ta có :a;a+2 là số lẻ nên a+1 là số chẵn nên a+1:2
cứ ba số thì có một số chia hết cho 3 mà a;a+2 là số nguyên tố nên a+1 là số chia hết cho 3
a+1:2 va:3 nên a+1 :6
vậy a+1 chia hết cho 6
3) CM:p+1 chia hết cho 2
vì p lớn hơn 3 suy ra p là số lẻ và p+1 là số chẵn.
Vậy p+1 chia hết cho 2
CM:p+1 chia hết cho 3
Ta có:p x (p+1) x (p+2) chia hết cho 3(vì tích 3 số liên tiếp luôn chia hết cho 3)
Mà p và p+2 là số nguyên tố nên p và p+2 ko chia hết cho 3
Vậy p+1 chia hết cho 3
Mà ƯCLN(2,3) là 1
Vậy p+1 chia hết cho 2x3 là 6
Vậy p+1 chia hết cho 6 với mọi p lớn hơn 3 và p+2 cùng là số nguyên tố.
2 số nguyên tố sinh đôi lớn hơn 3
Hai số đó chẵn (1)
=> Số giữa chẵn => Chia hết cho 2
Nếu số cuối chia 3 dư 1 (2) => Số nằm giữa chia hết cho 3
Từ (1) và (2) => Số ở giữa chia hết cho 2.3 = 6
Nếu số cuối chia 3 dư 2
=> Số thứ giữa chia 3 dư 1
=> Số thứ nhất chia hết cho 3 (lớn hơn 3)
Mà số thứ nhất là số nguyên tố => Loại
=> ĐPCM
mk ko bit nhung tick cho mk di lam on