K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2018

a, HS tự chứng minh

b, OM = R 2

c, MC. MD = M A 2  = MH.MO

=> MC. MD = MH.MO

=> DMHC ~ DMDO (c.g.c)

=>  M H C ^ = M D O ^ => Tứ giác CHOD nội tiếp

Chứng minh được:  M H C ^ = O H D ^

=>  C H B ^ = B H D ^ (cùng phụ hai góc bằng nhau)

30 tháng 3 2018

Bài này dễ mà bạn ^_^

10 tháng 3 2017

Đường tròn c: Đường tròn qua D_1 với tâm O Đoạn thẳng f: Đoạn thẳng [C, D] Đoạn thẳng h: Đoạn thẳng [M, C] Đoạn thẳng k: Đoạn thẳng [M, A] Đoạn thẳng l: Đoạn thẳng [M, B] Đoạn thẳng n: Đoạn thẳng [B, E] Đoạn thẳng p: Đoạn thẳng [O, A] Đoạn thẳng q: Đoạn thẳng [O, B] Đoạn thẳng r: Đoạn thẳng [M, O] Đoạn thẳng s: Đoạn thẳng [A, B] Đoạn thẳng t: Đoạn thẳng [H, C] Đoạn thẳng a: Đoạn thẳng [D, H] O = (1.6, 4.42) O = (1.6, 4.42) O = (1.6, 4.42) Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm M: Điểm trên g Điểm M: Điểm trên g Điểm M: Điểm trên g Điểm A: Giao điểm của c, j Điểm A: Giao điểm của c, j Điểm A: Giao điểm của c, j Điểm B: Giao điểm của c, i Điểm B: Giao điểm của c, i Điểm B: Giao điểm của c, i Điểm I: Trung điểm của f Điểm I: Trung điểm của f Điểm I: Trung điểm của f Điểm E: Giao điểm của c, m Điểm E: Giao điểm của c, m Điểm E: Giao điểm của c, m Điểm H: Giao điểm của r, s Điểm H: Giao điểm của r, s Điểm H: Giao điểm của r, s

a. Do I là trung điểm CD nên \(OI⊥CD\Rightarrow\widehat{OIM}=90^o.\)

Ta thấy \(\widehat{OAM}=\widehat{OBM}=\widehat{OIM}=90^o\) nên A, B ,M , O, I cùng thuộc đường tròn đường kính MO.

b. Xét đường tròn (O) có \(\widehat{AEB}=\frac{\widehat{AOB}}{2}\) (1)

Xét đường tròn đường kính MO có MA = MB nên \(sđ\widebat{AM}=sđ\widebat{MB}\).

Nên  \(\widehat{AOB}=\frac{sđ\widebat{AMB}}{2}=sđ\widebat{AM}=sđ\widebat{MB}\)

Lại có \(\widehat{MIB}=\frac{sđ\widebat{MB}}{2}=\frac{\widehat{AOB}}{2}\), vậy nên \(\widehat{MIB}=\widehat{AEI.}\)

Lại có \(\widehat{MIB}=\widehat{EID}\) (đối đỉnh) nên \(\widehat{AEI}=\widehat{EID}\)

Chúng ở vị trí so le trong nên AE // CD.

c. Nếu \(MA⊥MB\)thì tứ giác OAMB là hình chữ nhật, lại có OA = OB nên nó là hình vuông. Khi đó \(OM=\sqrt{2OB^2}=R\sqrt{2}\)

Vậy để \(MA⊥MB\) thì M thuộc tia đối tia CD mà \(OM=R\sqrt{2}\)

d. Ta thấy ngay \(\Delta MBD\sim\Delta MCB\left(g-g\right)\Rightarrow\frac{MB}{MC}=\frac{MD}{MB}\Rightarrow MB^2=MC.MD\)

Xét tam giác vuông MBO có BH là đường cao nên \(MB^2=MH.MO\)

Vậy thì \(MH.MO=MC.MD\Rightarrow\frac{MH}{MD}=\frac{MC}{MO}\)

Suy ra \(\Delta MCH\sim\Delta MDO\left(c-g-c\right)\)

Vậy thì \(\widehat{MHC}=\widehat{MDO}\left(1\right)\) hay tứ giác HCDO nội tiếp. Vậy \(\widehat{OCD}=\widehat{OHD}\) (2) (Cùng chắn cung OD)

Lại có \(\widehat{MDO}=\widehat{OCD}\) (OC = OD = R) nên \(\widehat{MHC}=\widehat{OHD}\)

Vậy thì \(\widehat{CHB}=\widehat{DHB}\) (Cùng phụ với góc MHC và OHD)

Tóm lại HB là phân giác góc CHD(đpcm).

9 tháng 3 2017

chưa học và khó quá nên ít người trả lời