K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2020
https://i.imgur.com/bvwnYhw.jpg
2 tháng 5 2020

@Miyuki Misaki, @Nguyễn Trúc Giang, @Nguyễn Lê Phước Thịnh, @White Hold

29 tháng 4 2017

C>1   vì c>1

29 tháng 4 2017

a, Ta có: \(A=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{50}=\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{30}\right)+\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}\right)\)

Nhận xét: \(\frac{1}{11}+\frac{1}{12}+....+\frac{1}{30}>\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}=\frac{20}{30}=\frac{2}{3}\)

\(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}=\frac{20}{60}=\frac{1}{3}\)

\(\Rightarrow A>\frac{2}{3}+\frac{1}{3}=1>\frac{1}{2}\)

Vậy A > 1/2

b, Ta có: \(\frac{1}{50}>\frac{1}{100};\frac{1}{51}>\frac{1}{100};........;\frac{1}{99}>\frac{1}{100}\)

\(\Rightarrow B>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{50}{100}=\frac{1}{2}\)

Vậy B > 1/2

c, Ta có: \(C=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}=\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\right)\)

Nhận xét: \(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{90}{100}=\frac{9}{10}\)

\(\Rightarrow C>\frac{1}{10}+\frac{9}{10}=\frac{10}{10}=1\)

Vậy C > 1

22 tháng 4 2015

Tổng S có 50 phân số

=> S > 1/100 + 1/100 + 1/100 +...+ 1/100 (50 phân số) => S > 1/2.

Vậy S > 1/2

Tổng S có 50 phân số

=> S > 1/100 + 1/100 + 1/100 +...+ 1/100 (50 phân số) => S > 1/2.

Vậy S > 1/2

22 tháng 4 2015

\(S=\left(\frac{1}{50}+\frac{1}{51}+...+\frac{1}{74}\right)+\left(\frac{1}{75}+\frac{1}{76}+...+\frac{1}{99}\right)\)

Có: \(\frac{1}{50}+\frac{1}{51}+...+\frac{1}{74}>\frac{1}{75}+\frac{1}{75}+...+\frac{1}{75}=\frac{25}{75}=\frac{1}{3}\)

\(\frac{1}{75}+\frac{1}{76}+...+\frac{1}{99}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{25}{100}=\frac{1}{4}\)

=> \(S>\frac{1}{3}+\frac{1}{4}=\frac{7}{12}>\frac{6}{12}=\frac{1}{2}\)=> đpcm

Giải:

\(S=\dfrac{1}{50}+\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{98}+\dfrac{1}{99}\) 

\(S=\left(\dfrac{1}{50}+\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{74}\right)+\left(\dfrac{1}{75}+...+\dfrac{1}{98}+\dfrac{1}{99}\right)\) 

\(\Rightarrow S>\left(\dfrac{1}{50}+\dfrac{1}{50}+\dfrac{1}{50}+...+\dfrac{1}{50}\right)+\left(\dfrac{1}{75}+...+\dfrac{1}{75}+\dfrac{1}{75}\right)\) 

\(\Rightarrow S>\dfrac{1}{2}+\dfrac{1}{3}>\dfrac{1}{2}\) 

\(\Rightarrow S>\dfrac{1}{2}\left(đpcm\right)\) 

thôi nhầm tiêu đề, xin lỗi bạn!

11 tháng 3 2018

Ta ó: \(\frac{1}{50}>\frac{1}{100};\frac{1}{51}>\frac{1}{100};\frac{1}{52}>\frac{1}{100};....;\frac{1}{99}>\frac{1}{100}\)

\(\Rightarrow S>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\left(50so\right)=\frac{50}{100}=\frac{1}{2}\)

Vậy...

11 tháng 3 2018

Ta có :

Tất cả các số hạng của tổng đều lớn hơn \(\frac{1}{100}\), mà tổng có 50 số hạng

=> S > \(\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\)( có 50 số 1/100 )

=> S > \(\frac{50}{100}\)\(\frac{1}{2}\)

Vậy S > 1/2

11 tháng 5 2017

1 - 1/2 + 1/3 - 1/4 +...+ 1/99 - 1/100

= (1 + 1/3 +...+ 1/99) - (1/2 + 1/4 +...+ 1/100)

= (1+1/2+1/3+...+1/100) - 2(1/2+1/4+...+1/100)

= (1+1/2+1/3+...+1/100) - (1+1/2+...+1/50)

= 1/51+1/52+...+1/100 (đpcm)

12 tháng 5 2017

thanks very muchokhehe