Cho tam giác ABC với trung tuyến AD. Qua D kẻ đường thẳng song song với AB; qua B kẻ đường thẳng song song với AD. Hai đường thẳng trên cắt nhau tại E. Gọi K là trung điểm của đoạn EC. Chứng minh rằng: Ba điểm A, D, K thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có AD//BE (gt) (1)
Mặt khác
Trên tia đối của tia KD lấy điểm I sao cho KI = KD
Xét tam giác KIE và tam giác KDC có
KI = KD (gt)
KE = KC (gt)
góc (IKE) = góc(DKC) (đối đỉnh)
=> tam giác KIE = tam giác KDC (c-g-c) (*)
=> góc (KIE) = góc (KDC) (2 góc tương ứng)
=> CD//IE hay BC//IE
=> góc (BDC) = góc (IED) (2 góc sole trong) (2)
và IE = CD (2 cạnh tương ứng) (3)
mà DC = DB (4)
Từ (3) và (4) suy ra IE = BD (5)
DE (cạnh chung) (6)
Từ (2), (5) và (6)
=> tam giác BED = tam giác IED (c-g-c)
=> góc IDE = góc BED (2 góc tương ứng)
=> ID//BD hay DK//BE (7)
Từ (1) và (7) suy ra A, D, K thẳng hàng
Hình vẽ
Ta có AD//BE (gt) (1)
Mặt khác
Trên tia đối của tia KD lấy điểm I sao cho KI = KD
Xét tam giác KIE và tam giác KDC có
KI = KD (gt)
KE = KC (gt)
góc (IKE) = góc(DKC) (đối đỉnh)
=> tam giác KIE = tam giác KDC (c-g-c) (*)
=> góc (KIE) = góc (KDC) (2 góc tương ứng)
=> CD//IE hay BC//IE
=> góc (BDC) = góc (IED) (2 góc sole trong) (2)
và IE = CD (2 cạnh tương ứng) (3)
mà DC = DB (4)
Từ (3) và (4) suy ra IE = BD (5)
DE (cạnh chung) (6)
Từ (2), (5) và (6)
=> tam giác BED = tam giác IED (c-g-c)
=> góc IDE = góc BED (2 góc tương ứng)
=> ID//BD hay DK//BE (7)
Từ (1) và (7) suy ra A, D, K thẳng hàng
Ta có AD//BE (gt) (1)
Mặt khác
Trên tia đối của tia KD lấy điểm I sao cho KI = KD
Xét tam giác KIE và tam giác KDC có
KI = KD (gt)
KE = KC (gt)
góc (IKE) = góc(DKC) (đối đỉnh)
=> tam giác KIE = tam giác KDC (c-g-c) (*)
=> góc (KIE) = góc (KDC) (2 góc tương ứng)
=> CD//IE hay BC//IE
=> góc (BDC) = góc (IED) (2 góc sole trong) (2)
và IE = CD (2 cạnh tương ứng) (3)
mà DC = DB (4)
Từ (3) và (4) suy ra IE = BD (5)
DE (cạnh chung) (6)
Từ (2), (5) và (6)
=> tam giác BED = tam giác IED (c-g-c)
=> góc IDE = góc BED (2 góc tương ứng)
=> ID//BD hay DK//BE (7)
Từ (1) và (7) suy ra A, D, K thẳng hàng
Ta có AD//BE (gt) (1)
Mặt khác
Trên tia đối của tia KD lấy điểm I sao cho KI = KD
Xét tam giác KIE và tam giác KDC có
KI = KD (gt)
KE = KC (gt)
góc (IKE) = góc(DKC) (đối đỉnh)
=> tam giác KIE = tam giác KDC (c-g-c) (*)
=> góc (KIE) = góc (KDC) (2 góc tương ứng)
=> CD//IE hay BC//IE
=> góc (BDC) = góc (IED) (2 góc sole trong) (2)
và IE = CD (2 cạnh tương ứng) (3)
mà DC = DB (4)
Từ (3) và (4) suy ra IE = BD (5)
DE (cạnh chung) (6)
Từ (2), (5) và (6)
=> tam giác BED = tam giác IED (c-g-c)
=> góc IDE = góc BED (2 góc tương ứng)
=> ID//BD hay DK//BE (7)
Từ (1) và (7) suy ra A, D, K thẳng hàng
Bài 1:
Không mất tổng quát giả sử $AB< AC$
Gọi $AH$ là phân giác $\widehat{BAC}$. Theo tính chất tia phân giác:
$\frac{BH}{CH}=\frac{AB}{AC}\Rightarrow \frac{BC}{CH}=\frac{AB+AC}{AC}$
Ta có:
$\frac{HN}{HC}=\frac{BN-BH}{HC}=\frac{BN}{HC}-\frac{BH}{HC}=\frac{BC}{2HC}-\frac{BH}{HC}=\frac{AB+AC}{2AC}-\frac{AB}{AC}$
$=\frac{AC-AB}{2AC}=\frac{AC-CD}{2AC}=\frac{AD}{2AC}=\frac{AM}{AC}$
Theo định lý Talet đảo suy ra $MN\parallel AH$
Ta có đpcm.
Ta có AD//BE (gt) (1)
Mặt khác
Trên tia đối của tia KD lấy điểm I sao cho KI = KD
Xét tam giác KIE và tam giác KDC có
KI = KD (gt)
KE = KC (gt)
góc (IKE) = góc(DKC) (đối đỉnh)
=> tam giác KIE = tam giác KDC (c-g-c) (*)
=> góc (KIE) = góc (KDC) (2 góc tương ứng)
=> CD//IE hay BC//IE
=> góc (BDC) = góc (IED) (2 góc sole trong) (2)
và IE = CD (2 cạnh tương ứng) (3)
mà DC = DB (4)
Từ (3) và (4) suy ra IE = BD (5)
DE (cạnh chung) (6)
Từ (2), (5) và (6)
=> tam giác BED = tam giác IED (c-g-c)
=> góc IDE = góc BED (2 góc tương ứng)
=> ID//BD hay DK//BE (7)
Từ (1) và (7) suy ra A, D, K thẳng hàng