Cho hệ phương trình
\(\hept{\begin{cases}mx+3y=1\\my-2x=5\end{cases}}\)
CMR phương trình có nghiệm duy nhất với mọi m
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để hpt có no duy nhất <=>\(\frac{a}{a'}\ne\frac{b}{b'}\Leftrightarrow\frac{1}{m}\ne\frac{m}{1}\)\(\Leftrightarrow m^2\ne1\Leftrightarrow m\ne\pm1\)
=>ĐPCM
\(\hept{\begin{cases}x-my=2\left(1\right)\\mx+2y=1\left(2\right)\end{cases}}\)
Từ (1)\(\Rightarrow x=2+my\)(3)
Thế (3) vào (2) ta được:
\(m\left(2+my\right)+2y=1\)
\(\Rightarrow2m+m^2y+2y=1\)
\(\Rightarrow y\left(m^2+2\right)=1-2m\)
Hệ phương trình có nghiệm duy nhất \(\Leftrightarrow m^2+2\ne0\)
\(\Leftrightarrow m^2\ne-2\)(luôn đúng)
Vậy hệ phương trình luôn có nghiệm duy nhất với mọi tham số m
\(\hept{\begin{cases}x-my=1\\mx+y=1\end{cases}}\)
<=> \(\hept{\begin{cases}mx-m^2y=m\\mx+y=1\end{cases}}\)
<=> \(\hept{\begin{cases}x-my=1\\\left(1+m^2\right)y=1-m\end{cases}}\)
<=> \(\hept{\begin{cases}x=1+my\\y=\frac{1-m}{m^2+1}\end{cases}}\)
<=> \(\hept{\begin{cases}x=1+m.\frac{1-m}{m^2+1}=\frac{1+m}{m^2+1}\\y=\frac{1-m}{m^2+1}\end{cases}}\)
Vậy với mọi m hệ luôn có nghiệm duy nhất.
Hệ phương trình có nghiệm duy nhất khi \(\frac{3}{m}\ne\frac{m}{-1}\)
\(\Leftrightarrow m^2\ne-3\forall m\)
Vậy hpt luôn có nguyên duy nhất với mọi m
bảo ngọc đàm đg