Bài 1: Cho hàm số y=[ m-2]x + 3a. Tìm m để đồ thị [d] của hàm số song song với đường thẳng y=x - 2Vẽ [d] trong trường hợp này và tính góc tạo bởi [d] với trục hoànhb. Tìm m để đồ thị [d] của hàm số đồng qui với hai đường thẳng y= -2x + 1 và y= -x + 4Bài 2 : Trên mặt phẳng tọa độ cho ba điểm A[2;3], B[-1;-3] và C[0;1]a] Tìm hệ số góc của đường thẳng ABb] Chứng tỏ rằng ba điểm A,B,C thẳng...
Đọc tiếp
Bài 1: Cho hàm số y=[ m-2]x + 3
a. Tìm m để đồ thị [d] của hàm số song song với đường thẳng y=x - 2
Vẽ [d] trong trường hợp này và tính góc tạo bởi [d] với trục hoành
b. Tìm m để đồ thị [d] của hàm số đồng qui với hai đường thẳng y= -2x + 1 và y= -x + 4
Bài 2 : Trên mặt phẳng tọa độ cho ba điểm A[2;3], B[-1;-3] và C[0;1]
a] Tìm hệ số góc của đường thẳng AB
b] Chứng tỏ rằng ba điểm A,B,C thẳng hàng
Bài 3: Cho hàm số y= mx- 2m - 1
a] Định m để đồ thị hàm số đi qua gốc tạo độ O \
b] Gọi A,B lần lượt là giao điểm của đồ thị hàm số với các trục Ox, Oy. Định m để diện tích tam giác OAB bằng [ đvdt]
c] Chứng minh rằng với mọi giá trị của m thì đồ thị của hàm số đã cho luôn đi qua một điểm cố định
Đề thiếu m ở 3 hoặc -2 rồi ạ.
\(y=mx^3+2mx^2+\left(1-m\right)x+3-2m\)
\(\Leftrightarrow\left(x^3+2x^2-x-2\right)m+\left(x-y+3\right)=0\)
Gọi \(\left(x_0\text{;}y_0\right)\) là điểm cố định mà đồ thị hàm số đi qua.
\(\Leftrightarrow\left\{{}\begin{matrix}x_0^3+2x_0^2-x_0-2=0\left(a\right)\\x_0-y_0+3=0\end{matrix}\right.\)
PT (a) có 3 nghiệm phân biệt nên đồ thị hàm số luôn đi qua 3 điểm cố định.
Giải pt ra 3 điểm đó là \(A\left(1\text{;}4\right),B\left(-1\text{;}2\right),C\left(-2\text{;}1\right)\)
\(\overrightarrow{AB}=\left(-2\text{;}-2\right)\)
\(\overrightarrow{AC}=\left(-3\text{;}-3\right)\)
\(\overrightarrow{AB}=\dfrac{2}{3}\overrightarrow{AC}\) => Vector AB và vector AC cùng hướng.
Vậy 3 điểm A, B, C thẳng hàng.