Tìm số nguyên tố p để p + 10 và p + 14 đều là số nguyên tố Ai giúp mk với. Mk cảm ơn nhìu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét các số nguyên tố p như sau:
+) xét p=2 => p++2=4 ( là hợp số, loại)
+) xét p=3 => p+2=5 và p+4 =7 ( đều là số nguyên tố, chọn)
+) xét các số nguyên tố p lớn hơn 3. khi chia p cho 3 ta có 3 dạng: p=3k+1 hoặc p=3k+2. ( k\(\in\)N*)
- nếu p=3k+1 =>p+2=3k+1+2=3k+3 chia hết cho 3 va lớn hơn 3
=> p+2 là hợp số( trái với đề, loại)
- nếu p=3k+2 => p+4=3k+2+4=3k+6 chia hết cho 3 và lớn hơn 3.
=> p+4 là hợp ( trái với đề, loại)
vậy p=3.
b) ta xét các số nguyên tố p như sau:
+) xét p=2 =>p+14=16 ( là hợp số, loại)
+) xét p=3=> p+1=4 ( loại)
vì các số nguyên tố lớn hơn 3 đều là số lẻ. => p+1 luôn luôn chẵn( không phải số nguyên tố)
=> không tìm được số nguyên tố thỏa mãn.
vậy không tìm được số nguyên tố thỏa mãn.
k cho mình nha!
a) gs cả 2 số đều lẻ thì tổng chẵn
mà 2 số nguyên tố lẻ nên >2 => tổng >2 mà tổng chẵn => ko là sô nguyên tố => trái đề bài
suy ra 1 trong 2 số là số chẵn mà 2 số là số nguyên tố => một số =2
mà 2 số này là 2 số nguyên tố liên tiếp nên số còn lại là 3
b) đặt 19n=p ( p nguyên tố);
vì p nguyên tố nên phân tích p thành tích 2 số tự nhiên ta có p=p*1
=> p=19;n=1
c)đặt (p+1)(p+7)=a ( a nguyên tố)
vì a nguyên tố nên phân tích a thành tích 2 số tự nhiên ta có a=a*1; mà p+1<p+7
nên p+1=1 và p+7=a => p=0;a=7
a. Số p có một trong ba dạng : 3k , 3k+1 , 3k+2 (k thuộc N*)
Nếu p = 3k thì p = 3 ( Vì p là số nguyên tố ) , khi đó p+2 = 5 , p+4 = 7 đều là số nguyên tố
Nếu p = 3k + 1 thì p + 2 = 3k + 3 chia hết cho 3 và lớn hơn 3 nên p + 2 là hợp số ( loại )
Nếu p = 3k + 2 thì p + 4 = 3k + 6 chia hết cho 3 và lớn hơn 3 nên p + 4 là hợp số ( loại )
Vậy p = 3
. Nếu p = 0 thì 0 + 8 = 8 và 0 + 10 = 10, 8 và 10 không cùng nguyên tố ( loại )
. Nếu p = 1 thì 1 + 8 = 9 và 1 + 10 = 11, 9 và 11 không cùng nguyên tố ( loại )
. Nếu p = 2 thì 2 + 8 = 10 và 2 + 10 = 12, 10 và 12 không cùng nguyên tố ( loại )
. Nếu p = 3 thì 3 + 8 =11 và 3 + 10 = 13 , 11 và 13 cùng nguyên tố ( chọn )
Vậy p = 3
Nếu p = 2
=> p + 8 = 2 + 8 = 10 (hợp số)
=> loại
Nếu p = 3
=> p + 8 = 3 + 8 = 11 (số nguyên tố)
=> p + 10 = 3 + 10 = 13 (số nguyên tố)
=> p = 3 chọn
Nếu p > 3
=> p \(\in\){3k + 1 ; 3k + 2}
Nếu p = 3k + 1
=> p + 8 = 3k + 1 + 8 = 3k + 9 = 3k + 3.3 = 3(k + 3) \(⋮\)3 (hợp số)
=> p = 3k+ 1 loại
Nếu p = 3k + 2
=> p + 10 = 3k + 2 + 10 = 3k + 12 = 3k + 3.4 = 3(k + 4) \(⋮\)3(hợp số)
=> p = 3k + 2 loại
Vậy p = 3
p = 2 => p + 16 = 18 không là số nguyên tố
p = 3 => p + 20 = 23 , p +16 = 19 là các số nguyên tố
P > 3 xét 3 số nguyên tố: p , p + 20 = p + 1 + 19, p +16 = p + 2 + 14
p, p + 1, p+2 là 3 số liên tiếp => có 1 trong 3 số chia hết cho 3
nếu p chia hết cho 3 thì p không là số nguyên tố ( vì p > 3)
nếu p + 1 chia hết cho 3 => p + 16 chia hết cho 3 => p +16 không là số nguyên tố
nếu p + 2 chia hết cho 3 => p + 20 chia hết cho 3 => p +20 không là số nguyên tố
=> khi p > 3 thì p, p + 16 , p +20 không thể là 3 số nguyên tố
vậy p = 3 thì p, p + 16 , p +20 là 3 số nguyên tố (3 , 23, 19)
Để p+16 và p+20 đều là số nguyên tố nên số nguyên tố p là 3.
Kb với mình nha mọi người!