K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 Cho hình vuông 12 x 12, được chia thành lưới các hình vuông đơn vị. Mỗi đỉnh của hình vuông đơn vị này được tô bằng một trong hai màu xanh đỏ. Có tất cả 111 đỉnh màu đỏ. Hai trong số những đỉnh màu đỏ này nằm ở đỉnh hình vuông lớn, 22 đỉnh màu đỏ khác nằm ở trên cạnh của hình vuông lớn (không trùng với đỉnh của hình vuông lớn). Hình vuông đơn vị được tô màu theo các quy...
Đọc tiếp

 Cho hình vuông 12 x 12, được chia thành lưới các hình vuông đơn vị. Mỗi đỉnh của hình vuông đơn vị này được tô bằng một trong hai màu xanh đỏ. Có tất cả 111 đỉnh màu đỏ. Hai trong số những đỉnh màu đỏ này nằm ở đỉnh hình vuông lớn, 22 đỉnh màu đỏ khác nằm ở trên cạnh của hình vuông lớn (không trùng với đỉnh của hình vuông lớn). Hình vuông đơn vị được tô màu theo các quy luật sau: cạnh có hai đầu mút màu đỏ được tô màu đỏ, cạnh có 2 đầu mút màu xanh được tô màu xanh, cạnh có một đầu mút màu đỏ và một đầu mú màu xanh thì được tô màu vàng. Giả sử có tất cả 66 cạnh vàng. Hỏi có bao nhiêu cạnh màu xanh?

                                          (Trích đề thi vào 10 chuyên Trần Phú, Hải Phòng, năm học 2012-2013)

0
Bài 1: Cho A=2x+15x√+18x+3x√–18+3x+4x√+12x–3x√–5–8x–15x√2xx√–11x+15x√1) Rút gọn biểu thức2) Tính A tại x=2+5–√−−−−−−√3+2–5–√−−−−−√3Bài 2:1) Tìm tất cả các số tự nhiên n sao cho số n4–3n2+1 là số nguyên tố.2) Tìm tất cả các số tự nhiên x;y sao cho x2+16x+1=y2.Bài 3:1) Giải phương trình: x+1−−−−−√+2x+2=x–1+1–x−−−−√+31–x2−−−−√2) Cho a,b,c không âm...
Đọc tiếp

Bài 1: Cho A=2x+15x√+18x+3x√–18+3x+4x√+12x–3x√–5–8x–15x√2xx√–11x+15x√
1) Rút gọn biểu thức
2) Tính A tại x=2+5–√−−−−−−√3+2–5–√−−−−−√3
Bài 2:
1) Tìm tất cả các số tự nhiên n sao cho số n4–3n2+1 là số nguyên tố.
2) Tìm tất cả các số tự nhiên x;y sao cho x2+16x+1=y2.
Bài 3:
1) Giải phương trình: x+1−−−−−√+2x+2=x–1+1–x−−−−√+31–x2−−−−√
2) Cho a,b,c không âm thỏa mãn a+b+c=3.
a) Chứng minh rằng: a2+3a+5−−−−−−−−−√≥5a+136
b) Tìm giá trị nhỏ nhất của a2+3ab+5b2−−−−−−−−−−−−√+b2+3bc+5c2−−−−−−−−−−−√+c2+3ca+5a2−−−−−−−−−−−−√
Bài 4: Cho hình vuông ABCD có tâm là O. Điểm E thuộc cạnh BC. Gọi F là giao điểm của tia AE và đường thẳng CD. G là giao điểm của DE và BF.
a) Chứng minh rằng 1AE2+1AF2=1AB2

b) Chứng minh CG⊥AF
c) Gọi H là giao điểm của OE và BF. Tìm vị trí của điểm E để diện tích tam giác HAD đạt giá trị lớn nhất.
Bài 5: Có bảy số 0 và một số 1 được điền vào 8 đỉnh của một hình lập phương (mỗi số điền vào 1 đỉnh). Mỗi bước thay đổi số là cộng thêm 1 vào các số ở cùng 1 cạnh nào đó của hình lập phương trên. Hỏi có thể thu được tất cả các số ở cả 8 đỉnh đều bằng nhau không? Vì sao?

 

1
6 tháng 7 2018

ủa bạn cái này phải là toán lớp 9 mới đúng chứ!

8 tháng 9 2019
Hình lăng trụ Số cạnh của một đáy (n) Số mặt (m) Số đỉnh (d) Số cạnh (c)
a) 6 8 12 18
b) 5 7 10 15

Không thể làm một hình lăng trụ đứng có 15 đỉnh vì d = 2n (số đỉnh của hình lăng trụ là một số chẵn)

Bài 2. Cho tập hợp A = f1; 2; 3; · · · ; 2ng. Chứng minh rằng nếu ta lấy ra n + 1 số khác nhau từ tập A, luôncó 2 số chia hết cho nhau.Bài 3. Các số 1; 2; 3; · · · ; 2020 ban đầu được viết lên bảng theo một thứ tự bất kì. Ở mỗi bước, chọn 2 số bấtkì và đổi chỗ 2 số đó. Hỏi sau 6969 bước, ta có thể thu được dãy số viết ban đầu hay không?Bài 4. Trên một đường tròn, ta viết 2 số 1 và 48...
Đọc tiếp


Bài 2. Cho tập hợp A = f1; 2; 3; · · · ; 2ng. Chứng minh rằng nếu ta lấy ra n + 1 số khác nhau từ tập A, luôn
có 2 số chia hết cho nhau.
Bài 3. Các số 1; 2; 3; · · · ; 2020 ban đầu được viết lên bảng theo một thứ tự bất kì. Ở mỗi bước, chọn 2 số bất
kì và đổi chỗ 2 số đó. Hỏi sau 6969 bước, ta có thể thu được dãy số viết ban đầu hay không?
Bài 4. Trên một đường tròn, ta viết 2 số 1 và 48 số 0 theo thứ tự 1; 0; 1; 0; 0; · · · ; 0. Mỗi phép biến đổi, ta
thay một 2 cặp 2 số liền nhau bất kì (x; y) bởi (x + 1; y + 1). Hỏi nếu ta lặp lại thao tác trên thì có thể đến 1
lúc nào đó thu được 50 số giống nhau hay không?
Bài 5. Trên đường tròn lấy theo thứ tự 12 điểm A1; A2; A3; · · · ; A12. Tại điểm A1 ta viết số -1, tại các đỉnh
còn lại ta viết số 1. Ở mỗi bước, chọn 6 điểm kề nhau bất kì và đổi dấu tất cả các số tại các điểm đó. Hỏi nếu
ta lặp lại thao tác trên thì có thể đến 1 lúc nào đó thu được trạng thái: điểm A2 viết số -1, các đỉnh còn lại
viết số 1, hay không?
Bài 6. Kí hiệu S(n) là tổng các chữ số của n. Tìm n, biết:
a) n + S(n) + S(S(n)) = 2019.
b) n + S(n) + S(S(n)) = 2020.
Bài 7. Giả sử (a1; a2; a3; · · · ; an) là 1 hoán vị của (1; 2; 3; · · · ; n) (là các số 1; 2; 3; · · · ; n nhưng viết theo
thứ tự tùy ý). Chứng minh rằng nếu n lẻ thì số P = (a1 - 1)(a2 - 2)(a3 - 3) · · · (an - n) là số chẵn.
Bài 8. Trên bàn có 6 viên sỏi, được chia thành vài đống nhỏ. Mỗi phép biến đổi được thực hiện như sau: ta
lấy ở mỗi đống 1 viên và lập thành đống mới. Hỏi sau 69 bước biến đổi như trên, các viên sỏi trên bàn được
chia thành mấy đống?
Bài 9. Xung quanh công viên người ta trồng n cây, giả sử trên mỗi cây có 1 con chim. Ở mỗi lượt, có 2 con
chim đồng thời bay sang cây bên cạnh theo hướng ngược nhau.
a) Với n lẻ, chứng tỏ rằng có thể có cách để tất cả các con chim cùng đậu trên một cây.
b) Chứng minh điều ngược lại với n chẵn.
 

0