một khu vườn hình chữ nhật có chiều dài gấp 3 lần chiều rộng.Nếu tăng chiều rộng 2m và giảm chiều dài 4m thì diện tích khu vườn tăng thêm 28m2. Tính kích thước của khu vườn đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều rộng là x (m) (x > 0)
=> chiều dài là 3x (m)
Theo bài ra ta có:
(x + 5)(3x - 10) = x.3x
<=> 3x² - 10x + 15x - 50 = 3x²
<=> 5x - 50 = 0
<=> x = 10 (nhận)
=> chiều rộng = 10m
chiều dài = 3. 10 = 30 m
Nửa chu vi: \(60:2=30\left(m\right)\)
Gọi chiều dài là x (m) ( 0<x<30 )
=> Chiều rộng là: \(30-x\) ( m )
Diện tích khu vườn đó là: \(x\left(30-x\right)\) \(\left(m^2\right)\)
Theo đề bài ta có pt:
\(\left(20+x\right)\left(30-x-2\right)=x\left(30-x\right)+10\)
\(\Leftrightarrow\left(20+x\right)\left(28-x\right)=x\left(30-x\right)+10\)
\(\Leftrightarrow560-20x+28x-x^2=30x-x^2+10\)
\(\Leftrightarrow-22x=-550\)
\(\Leftrightarrow x=25\left(tm\right)\)
=> Chiều rộng là: \(30-25=5\left(m\right)\)
Vậy chiều dài là: 25m
chiều rộng là 5m
Nửa chu vi là \(60:2=30\left(m\right)\)
Gọi độ dài chiều dài ban đầu là \(x\left(m;0< x< 30\right)\)
Thì chiều rộng ban đầu là \(30-x\left(m\right)\)
Diện tích ban đầu là \(x\left(30-x\right)\)
Chiều dài sau khi tăng thêm 20m là \(x+20\left(m\right)\)
Chiều rộng sau khi giảm 2m là \(30-x-2=28-x\)
Diện tích lúc sau là \(\left(x+20\right)\left(28-x\right)\)
Vì sau khi tăng chiều dài thêm 20m và giảm chiều rộng đi 2m thì diện tích khu vường tăng 10m2 nên ta có phương trình :
\(\left(x+20\right)\left(28-x\right)-x\left(30-x\right)=10\)
\(\Leftrightarrow28x-x^2+560-20x-30x+x^2=10\)
\(\Leftrightarrow-22x=-550\)
\(\Leftrightarrow x=25\left(nhận\right)\)
Vậy chiều dài khu vườn ban đâu là 25m, chiều rộng là 5m
Gọi chiều rộng của thửa ruộng ban đầu là a => Chiều dài là a+2
Khi giảm chiều rộng đi 4m và chiều dài tăng lên 3m thì phần diện tích giảm đi sẽ là hiệu của 2 phần diện tích gạch chéo.
Ta có: 4.(a+2)-3(a-4)=75
<=> 4a+8-3a+12=75 => a=55m
Chiều dài thửa ruộng ban đầu là: 55+2=57m
Gọi chiều dài ban đầu là \(x\left(m\right)\) thì chiều rộng ban đầu là \(x-8\left(m\right)\)
Chiều dài sau khi thay đổi là \(x+10\left(m\right)\), chiều rộng sau khi thay đổi là \(x-8-4=x-12\left(m\right)\)
Ta có: \(x\left(x-8\right)=\left(x+10\right)\left(x-12\right)\)
\(\Rightarrow x^2-8x=x^2-12x+10x-120\)
\(\Rightarrow6x=120\Rightarrow x=20\left(m\right)\)
Vậy chiều dài ban đầu là 20m, chiều rộng ban đầu là 12m.
gọi dài=x , rộng=x-4 -->x(x-4)=S -->x^2-4x=S(1)
lại có (x+5)(x-4-2)=S+21 -->x^2-x-30=S+21 (2)
trừ (2) cho (1) -->3x=51 -->x=17 -->dài=17 rộng=13
-->chu vi = (17+13)*2=60m
\(\left(x+4\right)\left(3x+4\right)-3x^2=176\)
\(\Leftrightarrow\text{}\text{}\text{}\text{}\text{}\text{}3x^2+4x+12x+16-3x^2=176\)
\(\Leftrightarrow\left(3x^2-3x^2\right)+\left(12x+4x\right)=176-16\)
\(\Leftrightarrow16x=160\)
\(\Leftrightarrow x=\dfrac{160}{16}\)
\(\Leftrightarrow x=10\)
2/Gọi chiều dài,rộng lần lượt là a;b (m;a,b>0)
Từ đề bài,suy ra a + b = 28 m
Suy ra a = 28 - b.
Suy ra diện tích là b(28-b)
Theo đề bài,ta có phương trình: \(\left(b-2\right)\left(28-b+4\right)=b\left(28-b\right)+8\)
\(\Leftrightarrow\left(b-2\right)\left(32-b\right)=-b^2+28b+8\)
\(\Leftrightarrow-b^2+34b-64=-b^2+28b+8\)
\(\Leftrightarrow34b-64=28b+8\)
\(\Leftrightarrow6b-72=0\Leftrightarrow b=12\)
Suy ra chiều dài là: 28 - b = 28 - 12 = 16
Vậy ...