Cho tam giác AHB và tam giác AHB vuông tại H và H, với AH bằng AH và góc B bằng góc B. Kéo dài BH và BH ra những đoạn HC và HC. Chứng minh rằng tam giác ABC bằng tam giác ABC.
Các bạn giúp mình vs ạ. Mình cảm ơn nhìu.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác AHB và tam giác AHC có
AB = AC ( giả thiết )
H1 = H2 ( = 90)
Ah chung
tam giác AHB = tam giác AHC ( c.g.c)
b, từ a, suy ra
- BH=HC (2 cạnh tương ứng)
- góc BAH=góc CAH (2 góc tương ứng)
c,Xét tam giác HKB và tam giác HIC có
HB = HC (từ câu b)
góc B = góc C (2 góc tương ứng)
Suy ra tam giác HKB = tam giác HIC (ch.gn)
Mik chỉ lm đc đến đây thôi còn câu d, mik ko bt lm
a) Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC(ΔBAC cân tại A)
AH chung
Do đó: ΔAHB=ΔAHC(cạnh huyền-cạnh góc vuông)
Suy ra: BH=HC(hai cạnh tương ứng)
Bạn tự vẽ hình nhá.
a, Vì tam giác ABC cân tại A nên AB = AC và \(\widehat{ABC}=\widehat{ACB}\)
Xét tam giác AHB vuông tại H và tam giác AHC vuông tại H , có:
AB = AC (gt)
AH là cạnh chung
=> Tam giác AHB = Tam giác AHC ( cạnh huyền - cạnh góc vuông )
b, Vì Tam giác AHB = Tam giác AHC nên HB = HC ( hai cạnh tương ứng )
và \(\widehat{BAH}=\widehat{CAH}\) ( hai góc tương ứng )
c, Vì Tam giác AHB = Tam giác AHC nên \(\widehat{ABH}=\widehat{ACH}\) hay \(\widehat{KBH}=\widehat{ICH}\)
Xét tam giác HKB vuông tại K và tam giác HIC vuông tại I, có:
HB = HC ( cmt )
\(\widehat{KBH}=\widehat{ICH}\)
=> Tam giác HKB = Tam giác HIC ( cạnh huyền - góc nhọn )