K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2020

Ta có: BĐT phụ sau: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)( CM bằng BĐT Shwars nha).Áp dụng ta có:

\(\frac{1}{a+3b+5c}+\frac{1}{b+3c+5a}+\frac{1}{3a+2b+4c}\ge\frac{9}{9a+6b+12c}=\frac{3}{3a+2b+4c}\left(1\right)\)

\(\frac{1}{b+3c+5a}+\frac{1}{c+3a+5b}+\frac{1}{3b+2c+4a}\ge\frac{9}{9b+6c+12a}=\frac{3}{3b+2c+4a}\left(2\right)\)

\(\frac{1}{c+3a+5b}+\frac{1}{a+3b+5c}+\frac{1}{3c+2a+4b}\ge\frac{9}{9c+6a+12b}=\frac{3}{3c+2a+4b}\left(3\right)\)

Cộng (1),(2) và (3) có:

\(2\left(\frac{1}{a+3b+5c}+\frac{1}{b+3c+5c}+\frac{1}{c+3a+5b}\right)+\left(\frac{1}{3a+2b+4c}+\frac{1}{3b+2c+4a}+\frac{1}{3c+2a+4b}\right)\ge3\left(\frac{1}{3a+2b+4c}+\frac{1}{3b+2c+4a}+\frac{1}{3c+2a+4b}\right)\)

\(\Rightarrow2VP\ge2VT\)

\(\RightarrowĐPCM\)

23 tháng 5 2021

Ta có:

sigma \(\frac{ab}{3a+4b+5c}=\) sigma \(\frac{2ab}{5\left(a+b+2c\right)+\left(a+3b\right)}\le\frac{2}{36}\left(sigma\frac{5ab}{a+b+2c}+sigma\frac{ab}{a+3b}\right)\)

Ta đi chứng minh: \(sigma\frac{ab}{a+b+2c}\le\frac{9}{4}\)

có: \(sigma\frac{ab}{a+b+2c}\le\frac{1}{4}\left(sigma\frac{ab}{c+a}+sigma\frac{ab}{b+c}\right)=\frac{1}{4}\left(a+b+c\right)=\frac{9}{4}\)

BĐT trên đúng nếu: \(sigma\frac{ab}{a+3b}\le\frac{9}{4}\)

Ta thấy: \(sigma\frac{ab}{a+3b}\le\frac{1}{16}\left(sigma\frac{ab}{a}+sigma\frac{3ab}{b}\right)=\frac{1}{16}\)( sigma \(b+sigma3a\)\(=\frac{1}{4}\left(a+b+c\right)=\frac{9}{4}\)

\(\Leftrightarrow sigma\frac{ab}{3a+4b+5c}\le\frac{1}{18}\left(5.\frac{9}{4}+\frac{9}{4}\right)=\frac{3}{4}\)(1)

MÀ: \(\frac{1}{\sqrt{ab\left(a+2c\right)\left(b+2c\right)}}=\frac{2}{2\sqrt{\left(ab+2bc\right)\left(ab+2ca\right)}}\ge\frac{2}{2\left(ab+bc+ca\right)}\)

\(=\frac{3}{3\left(ab+bc+ca\right)}\ge\frac{3}{\left(a+b+c\right)^2}=\frac{3}{9^2}=\frac{1}{27}\)(2)

Từ (1) và (2) \(\Rightarrow T\le\frac{3}{4}-\frac{1}{27}=\frac{77}{108}\)

Vậy GTLN của biểu thức T là 77/108 <=> a=b=c=3

8 tháng 7 2016

bài 2 thì bạn áp dụng bdt cô si với lựa chọn điểm rơi  hoặc bdt holder  ( nó giống kiểu bunhia ngược ) . bai 1 thi ap dung cai nay \(\frac{1}{x}+\frac{1}{y}>=\frac{1}{x+y}\)  câu 1 khó hơn nhưng bạn biết lựa chọn điểm rơi với áp dụng bdt phụ kia là ok .

9 tháng 7 2016

Bài 1:Đặt VT=A

Dùng BĐT \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\Rightarrow\frac{1}{x+y+z}\le\frac{1}{9}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)x,y,z>0\)

Áp dụng vào bài toán trên với x=a+c;y=b+a;z=2b ta có:

\(\frac{ab}{a+3b+2c}=\frac{ab}{\left(a+c\right)+\left(b+c\right)+2b}\le\frac{ab}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)

Tương tự với 2 cái còn lại

\(A\le\frac{1}{9}\left(\frac{bc+ac}{a+b}+\frac{bc+ab}{a+c}+\frac{ab+ac}{b+c}\right)+\frac{1}{18}\left(a+b+c\right)\)

\(\Rightarrow A\le\frac{1}{9}\left(a+b+c\right)+\frac{1}{18}\left(a+b+c\right)=\frac{a+b+c}{6}\)

Đẳng thức xảy ra khi a=b=c 

Bài 2:

Biến đổi BPT \(4\left(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\right)\ge3\)

\(\Rightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{3}{4}\)

Dự đoán điểm rơi xảy ra khi a=b=c=1

\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge\frac{3a}{4}\)

Tương tự suy ra

\(VT\ge\frac{2\left(a+b+c\right)-3}{4}\ge\frac{2\cdot3\sqrt{abc}-3}{4}=\frac{3}{4}\)

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

4 tháng 11 2017

Áp dụng bất đẳng thức Svác xơ ngược ta có 

\(\frac{1}{2a+3b+3c}=\frac{1}{a+b+a+c+2\left(b+c\right)}\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{2}{b+c}\right)\)

tương tự mấy cái kia rồi cộng vào 

4 tháng 11 2017

Thu Mai ê, phải là\(\frac{1}{9}\) chứ, 3 số đấy

NV
17 tháng 5 2020
\(\Leftrightarrow\frac{\sqrt{5abc}}{a\sqrt{3a+2b}}+\frac{\sqrt{5abc}}{b\sqrt{3b+2c}}+\frac{\sqrt{5abc}}{c\sqrt{3c+2a}}\ge3\)

\(\Leftrightarrow\frac{\sqrt{bc}}{\sqrt{5a\left(3a+2b\right)}}+\frac{\sqrt{ac}}{\sqrt{5b\left(3b+2c\right)}}+\frac{\sqrt{ab}}{\sqrt{5c\left(3c+2a\right)}}\ge\frac{3}{5}\)

\(\Leftrightarrow\frac{bc}{\sqrt{5ab\left(3ac+2bc\right)}}+\frac{ac}{\sqrt{5bc\left(3ab+2ac\right)}}+\frac{ab}{\sqrt{5ac\left(3bc+2ab\right)}}\ge\frac{3}{5}\)

Thật vậy, theo AM-GM ta có:

\(VT\ge\frac{2bc}{5ab+2bc+3ac}+\frac{2ac}{3ab+5bc+2ac}+\frac{2ab}{2ab+3bc+5ac}\)

Đặt \(\left(ab;bc;ca\right)=\left(x;y;z\right)\)

\(\Rightarrow VT\ge\frac{2x}{2x+3y+5z}+\frac{2y}{5x+2y+3z}+\frac{2z}{3x+5y+2z}=\frac{2x^2}{2x^2+3xy+5zx}+\frac{2y^2}{5xy+2y^2+3yz}+\frac{2z^2}{3zx+5yz+2z^2}\)

\(\Rightarrow VT\ge\frac{\left(x+y+z\right)^2}{\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+2\left(xy+yz+zx\right)}=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+2\left(xy+yz+zx\right)}\)

\(\Rightarrow VT\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\frac{2}{3}\left(x+y+z\right)^2}=\frac{3}{5}\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z\) hay \(a=b=c\)

13 tháng 6 2017

Ta có:

\(\frac{\sqrt{5abc}}{a\sqrt{3a+2b}}+\frac{\sqrt{5abc}}{b\sqrt{3b+2c}}+\frac{\sqrt{5abc}}{c\sqrt{3c+2a}}\)

\(=\frac{5bc}{\sqrt{5ab\left(3ac+2bc\right)}}+\frac{5ac}{\sqrt{5bc\left(3ba+2ca\right)}}+\frac{5ab}{\sqrt{5ca\left(3cb+2ab\right)}}\)

\(\ge\frac{10bc}{5ab+3ac+2bc}+\frac{10ac}{5bc+3ba+2ca}+\frac{10ab}{5ca+3cb+2ab}\)

Đặt \(ab=x,bc=y,ca=z\)(cho dễ nhìn)

\(=\frac{10x}{2x+3y+5z}+\frac{10y}{2y+3z+5x}+\frac{10z}{2z+3x+5y}\)

\(=\frac{10x^2}{2x^2+3yx+5zx}+\frac{10y^2}{2y^2+3zy+5xy}+\frac{10z^2}{2z^2+3xz+5yz}\)

\(\ge\frac{10\left(x+y+z\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+zx\right)}=\frac{5\left(x+y+z\right)^2}{\left(x^2+y^2+z^2\right)+4\left(xy+yz+zx\right)}\)

Giờ ta cần chứng minh

\(\frac{5\left(x+y+z\right)^2}{\left(x^2+y^2+z^2\right)+4\left(xy+yz+zx\right)}\ge3\)

\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\)(đúng)

Vậy ta có ĐPCM

13 tháng 6 2017

alibaba nguyễn bạn trả lời đúng đấy! Nhưng để dễ hiểu hơn ta nên áp dụng tổ hợp BĐT AM-GM và Cauchy-Schwarz nhé!

Y
21 tháng 6 2019

\(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}=\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6c}{4}\)

\(=\frac{15a-10b+6c-15a+10b-6c}{25+9+4}=0\)

\(\Rightarrow\left\{{}\begin{matrix}3a=2b\\2c=5a\\5b=3c\end{matrix}\right.\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{10}\)

\(\Rightarrow\left\{{}\begin{matrix}a=\frac{a+b+c}{5}\\b=\frac{3\left(a+b+c\right)}{10}\\c=\frac{a+b+c}{2}\end{matrix}\right.\)

\(\Rightarrow P=\frac{\frac{33\left(a+b+c\right)}{10}}{\frac{43\left(a+b+c\right)}{10}}=\frac{33}{43}\)