Bài 9: Cho hình vuông ABCD, cạnh 6cm. M là trung điểm BC, AC cắt BD tại O, AM cắt BD tại I.
a) Chứng minh AI=2AM
b) Tính OI
GIÚP MINK VS
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Độ dài cạnh hình thoi là:
\(\sqrt{\left(\dfrac{AC}{2}\right)^2+\left(\dfrac{BD}{2}\right)^2}=5\left(cm\right)\)
b: Xét tứ giác BOCE có
M là trung điểm của BC
M là trung điểm của OE
Do đó: BOCE là hình bình hành
mà \(\widehat{BOC}=90^0\)
nên BOCE là hình chữ nhật
c: Xét tứ giác ODCE có
OD//CE
OD=CE
Do đó: ODCE là hình bình hành
Suy ra: Hai đường chéo OC và DE cắt nhau tại trung điểm của mỗi đường
mà N là trung điểm của OC
nên N là trung điểm của DE
hay D,N,E thẳng hàng
a. \(\widehat{AOE}=90^0-\widehat{BOE}=\widehat{BOM}\)
\(\Rightarrow\)△AOE=△BOM (g-c-g). \(\Rightarrow AE=BM;BE=CM\).
△MCN có: CN//AB \(\Rightarrow\dfrac{MN}{AM}=\dfrac{CM}{BM}=\dfrac{BE}{AE}\Rightarrow\)ME//NB.