cho đường tròn (O;R) có đường kính AB. M là một điểm bất kì trên đường tròn đó ( M khác A và khác B). Tiếp tuyến tại M cắt hai tiếp tuyến tại A và B của đường tròn đã cho lần lượt tại C và D.
a) chứng minh rằng :
i) các tứ giác AOMC và BOMD nội tiếp
ii) OC vuông góc với OD và góc AOC = góc AMC = góc OBM = góc ODM.
b) trong trường hợp biết góc BAM = 60 độ. chứng minh rằng tam giác BDM đều và tính diện tích của hình quạt tròn chắn cung nhỏ MB của đường tròn đã cho theo R
a) i) ta có \(\widehat{CAO}=\widehat{CMO}=90^0\)
=> tứ giác AOMC nội tiếp đường tròn đường kính OC
tương tự ta lại có \(\widehat{DBO}=\widehat{DMO}=90^0\)
=> tứ giác BOMD nội tiếp đường tròn đường kính OD
ii) Ta có \(\widehat{OBM}=\frac{1}{2}\widehat{AOM}\)( góc nội tiếp zà góc ở tâm cùng chắn 1 cung)
\(\widehat{AOC}=\frac{1}{2}\widehat{AOM}\)(t/c 2 đường tiếp tuyến cắt nhau )
=>\(\widehat{OBM}=\widehat{AOC}\)
=> \(OC//BM\)mà \(BM\perp OD\)(tính chất 2 tiếp tuyến cắt nhau)
=>\(OC\perp OD\)(dpcm)
ta có \(\widehat{AOC}=\widehat{AMC}\left(1\right)\)( hai góc nội tiếp cùng chắn 1 cung AC của đường tròn đường kính OD )
\(\widehat{OBM}=\widehat{ODM}\left(2\right)\)(hai góc nội tiếp cùng chắn 1 cung OM của đường tròn đường kính OD)
\(\widehat{AOC}=\widehat{OBM}\left(3\right)\left(cmt\right)\)
zậy từ 1 ,2 ,3 => góc AOC= góc AMC = góc OBM = góc ODM
b)+) \(\widehat{BAM}=\widehat{BMD}=60^0\)( góc nội tiếp zà góc giữa 1 tia tiếp tuyến zà một dây cung cùng chắn 1 cung)
mà tam giác DBM cân tại D ( t/c 2 tiếp tuyến cát nhau )
=> tam giác DBM đều (dpcm)
+)\(\widehat{BOM}=2\widehat{BAM}=120^0\)( góc nội tiếp zà góc ở tâm cùng chắn 1 cung )
gọi S là diện tích cần tìm
\(=>S=\frac{\pi R^2120}{360}=\frac{\pi R^2}{3}\)(đơn zị diện tích )
cho mình xin hình ạ