cho tam giác abc cân tại A ,kẻ AH vuông góc với bc tại h có BC=18 cm,AH=12cm. a) tính độ dài AB, Chu vi của tam giác ABC. b) trên tia đối của tia BC lấy điểm M, trên tia đối của tia CB lấy điểm N sao choBM =CN. Chứng minh tam giác AMN câm. c) TừB kẻ BI Vuông góc với AM tại I , kẻ CK vuông góc với AN tại K . Chứng minh IK// BC. d) IB cắt CK kéo dài tạiO . Chứng minh A,O,H thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác ABC cân tại A có AH vuông BC
=> AH đồng thời là đường trung tuyến
=> BH = CH
b, Theo Pytago tam giác AHB vuông tại H
\(BH=\sqrt{AB^2-AH^2}=6cm\)
=> BC = 2BH = 12 cm
c, Vì tia đối của BC là tia BM
=> BM = BC
Vì tia đối của CB là tia CN
=> CN = BC
=> BM + BH = CN + CH
hay H là trung điểm MN
Xét tam giaccs AMN có :
AH là đường cao
AH là đường trung tuyến
=> AH đồng thời phân giác
GT | △ABC cân tại A. AB = AC = 13cm. BC = 24cm. AH ⊥ BC (H BC). BK = CI. BM ⊥ AK. CN ⊥ AI |
KL | a, △AHC = △AHB b, AH = ? c, △ABK = △ACI d, △MBK = △NCI |
Bài giải:
a, Vì △ABC cân tại A (gt) => AB = AC và ABC = ACB
Xét △AHC vuông tại H và △AHB vuông tại H
Có: AH là cạnh hcung
AC = AB (cmt)
=> △AHC = △AHB (ch-cgv)
b, Ta có: BC = BH + HC
Mà BC = 24 cm
=> BH + HC = 24 cm
Mà HC = HB (△AHC = △AHB)
=> HC = HB = 24 : 2 = 12 (cm)
Xét △ABH vuông tại H có: AH2 + BH2 = AB2 (định lý Pytago)
=> AH2 + 122 = 132 => AH2 = 25 => AH = 5
c, Ta có: ABK + ABC = 180o (2 góc kề bù)
ACI + ACB = 180o (2 góc kề bù)
Mà ABC = ACB (cmt)
=> ABK = ACI
Xét △ABK và △ACI
Có: AB = AC (cmt)
ABK = ACI (cmt)
BK = CI (gt)
=> △ABK = △ACI (c.g.c)
d, Xét △MBK vuông tại M và △NCI vuông tại N
Có: BK = CI (gt)
MKB = NIC (△ABK = △ACI)
=> △MBK = △NCI (ch-gn)
Bài 2
gọi E là trung điểm của KB
Vì tam giác CKB có BM=MC ; BE=EK
=>EM//KC
Vì tam giác ENM có AN=AM ; KA//EM
=>EK=KN
Vì KN=KE=EB=>NK=1/2KB
a: Xét ΔABM và ΔACN có
AB=AC
góc ABM=góc ACN
BM=CN
=>ΔABM=ΔACN
=>AM=AN
b: góc MBD=góc ECN
=>góc KBC=góc KCB
=>K nằm trên trung trực của BC
=>A,H,K thẳng hàng
a,b: Xet ΔAHC vuông tại H và ΔDKC vuông tại K có
CA=CD
góc ACH=góc DCK
=>ΔAHC=ΔDKC
=>KC=HC=1/2BC
t lười vẽ hình lắm, vô cùng xin lỗi :(
a) Vì ∆ ABC cân tại A nên AH vừa là đường cao, vừa là trung tuyến => HB = HC = 12:2 = 6
Áp dụng định lí Py-ta-go cho ∆ AHB, ta được: AH2 + BH2 = AB2 => AB2 = 122 + 92 = 225 = 152 => AB = 15 = AC
=> PABC = AB + AC + BC = 15 + 15 + 18 = 48
b) Vì BM = CN (gt) ; HB = HC (cmt) => HB + BM = HC + CN => HM = HN => AH là trung tuyến của ∆ AMN (1)
Lại có: AH ┴ BC hay AH ┴ MN => AH là đường cao của ∆ AMN (2)
Từ (1) và (2) =>∆ AMN cân tại A
c) Xét ∆ BIM và ∆ CKN vuông tại I và K có:
MB = NC (gt) ; ^KNC = ^IMB (∆AMN cân tại A) => ∆ BIM = ∆ CKN ( ch - gn ) => MI = KN
Mà AM = AN (∆AMN cân tại A) => AI = AK => ∆ AIK cân tại A
=> ^AIK = ^AKI = ( 180o - ^MAN ) : 2 = ^AMN = ^ANM => IK // MN (đồng vị) hay IK // BC
d) Vì IK // MN => ^IKN = ^KCN (slt) ; ^KIB = ^IBM (slt)
Lại có: ^IBM = ^KCN ( vì ∆BIM=∆CKN ) => ^IKN = ^KIB hay ^OIK = ^OKI => ∆OKI cân tại O => OK = OI
Xét ∆ AIO và ∆ AKO có:
AI = AK ( ∆AIK cân tại A) ; OK = OI (cmt) ; AO (chung) => ∆ AIO = ∆ AKO ( c-c-c )
=> ^OAI = ^OAK (3)
Vì ∆AMN cân tại A => AH là phân giác của ∆AMN.=> ^HAM = ^HAN hay ^HAI = ^HAK (4)
Từ (3) và (4) => A, O, H thẳng hàng.
Ya, that's it!
Kien thuc nay ai da duoc hoc ma hieu
crazy girl