K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2021

a: \(\overrightarrow{AD}+\overrightarrow{DC}=\overrightarrow{AC}\)

b: \(\overrightarrow{NA}+\overrightarrow{ND}=\overrightarrow{0}\)

23 tháng 9 2021

ABCD là hbh => NCMA cũng là hình bình hành 

Áp dụng quy tắc hình bình hành => ↓NC + ↓MC = ↓CA ( cái này đễ cho dễ hiểu thì trước tiên gọi O là trung điểm của MN => quy tắc hình bình hành ↓NC + ↓MC = 2↓CO = ↓CA) 

↓AD + ↓NC = ↓AN + ↓ND + ↓NC = ↓AC + ↓ND = ↓AC + ↓MC = 2↓CI ( với I là trung điểm của AM)
↓AM + ↓CD = ↓AB + ↓BM + ↓CD = ↓BM

 

25 tháng 3 2019

20 tháng 9 2020

                                      A B C D M N E

a) Ta có : AB // CD ( do ABCD là hình bình hành )

\(\Rightarrow\)AM // NC \(\left(1\right)\)

Lại có : M là trung điểm của AB \(\Rightarrow AM=\frac{1}{2}AB\left(2\right)\)

              N là trung điểm của DC \(\Rightarrow CN=\frac{1}{2}CD\left(3\right)\)

mà AB = CD ( ABCD là hình bình hành ) \(\left(4\right)\)

Từ \(\left(2\right);\left(3\right);\left(4\right)\Rightarrow AM=CN\left(5\right)\)

Từ \(\left(1\right);\left(5\right)\Rightarrow\)tứ giác AMCN là hình bình hành

b) Ta có : ABCD là hình bình hành (gt)

\(\Rightarrow\)AC cắt BD tại trung điểm của mỗi đường

\(\Rightarrow\)O là trung điểm của BD và O là trung điểm của AC (*)

Ta có : AMCN là hình bình hành (cma)

\(\Rightarrow\)AC cắt MN tại trung điểm của mỗi đường 

\(\Rightarrow\)O là trụng điểm của MN (**)

Từ (*) ; (**) \(\Rightarrow\)AC ; BD ; MN đồng quy

c) Ta có : AM = CN (cmt)

mà \(CN=\frac{1}{2}DC\)(cmt)

\(\Rightarrow AM=\frac{1}{2}DC\)

\(\Rightarrow\)AM là đường trung bình của \(\Delta ECD\) 

        

a) N trung điểm AD \(\Rightarrow AN=\frac{AD}{2}=\frac{BC}{2}\)

M trung điểm BC \(\Rightarrow MC=\frac{BC}{2}\Rightarrow AN=MC\)mà AN//MC

nên AMCN là hình bình hành \(\Rightarrow\overrightarrow{AM}=\overrightarrow{NC}\)

b) Tương tự câu a ta được \(\hept{\begin{cases}ND=BM=\frac{1}{2}BC\\ND//BM\end{cases}}\)=> NDMB là hình bình hành=> NB//DM (1)

Xét 2 tam giác ANI và NDK: \(\hept{\begin{cases}AN=ND=\frac{AD}{2}\\\widehat{NAI}=\widehat{DNK}\left(AM//NC\right)\\\widehat{ANI}=\widehat{NDK}\left(NB//MD\right)\end{cases}\Rightarrow\Delta ANI=\Delta NDK\left(g.c.g\right)}\)

\(\Rightarrow NI=DK\)(2)

(1), (2) => \(\overrightarrow{NI}=\overrightarrow{DK}\)

14 tháng 9 2021

\hept là j???