TÌM CHỮ SỐ TẬN CÙNG CỦA DÃY SỐ A = 3n+2 - 2n+2 + 3n - 2n
VỚI N THUỘC N*
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cristiano Ronaldoĩ 17/05/2015 lúc 10:21
Báo cáo sai phạm
Ta biết rằng một số và tổng các chữ số của nó có cùng số dư khi chia cho 9. Tổng các chữ số của x ; của 2x; của 3x cộng lại là 1 + 2+ ……+ 9 = 45, chia hết cho 9, do đó tổng x + 2x + 3x cũng chia hết cho 9, tức là 6x chia hết cho 9 => x chia hết cho 3
Do x có tận cùng bằng 2 nên 2x tận cùng bằng 4 và 3x tận cùng bằng 6
Gọi a và b là các chữ số hàng trăm, hàng chục của 3x thì
a,b∈{1;3;5;7;8;9} (Trừ các số 2, 4, 6) mặt khác x chia hết cho3 nên 3x chia hết cho 9.
Tức là: abc chia hết cho 9 do đó a +b + 6 chia hết cho 9 chú ý : 4
Ta biết rằng một số và tổng các chữ số của nó có cùng số dư khi chia cho 9. Tổng các chữ số của x ; của 2x; của 3x cộng lại là 1 + 2+ ……+ 9 = 45, chia hết cho 9, do đó tổng x + 2x + 3x cũng chia hết cho 9, tức là 6x chia hết cho 9 => x chia hết cho 3
Do x có tận cùng bằng 2 nên 2x tận cùng bằng 4 và 3x tận cùng bằng 6
Gọi a và b là các chữ số hàng trăm, hàng chục của 3x thì
a,b∈{1;3;5;7;8;9} (Trừ các số 2, 4, 6) mặt khác x chia hết cho3 nên 3x chia hết cho 9.
Tức là: abc chia hết cho 9 do đó a +b + 6 chia hết cho 9 chú ý : 4
a) Để một số chia hết cho 100 thì số đó phải có 2 chữ số tận cùng là 0
\(5^4=5^2\cdot5^2=25\cdot25\)có tận cùng là 25
Nên \(5^4+375\)có tận cùng là 2 chữ số 0
\(\Rightarrow5^4+375⋮100\)
b) \(2001^n+2^{3n}\cdot47^n+25^{2n}\)
Xét : \(2001^n\)có tận cùng là 1 nên lũy thừa với số mũ bao nhiêu đều có tận cùng là 1
\(2^{3n}\cdot47^n=\left(2^3\right)^n\cdot47^n=8^n\cdot47^n=376^n\)
\(25^{2n}=\left(25^2\right)^n=625^n\)
\(376^n\)và \(625^n\)có chữ số tận cùng là 6 và 5 nên lũy thừa với số mũ bao nhiêu cũng sẽ có tận cùng là 6 hoặc 5
\(\Rightarrow2001^n+376^n+625^n\)có tận cùng là 2