Cho hệ phương trình:
\(\hept{\begin{cases}mx+4y=10-m\\x+my=6\end{cases}}\)
a)Giải hệ phương trình khi m=\(\sqrt{2}\)
b)Xác định các giá trị nguyên của m để hệ có nghiệm duy nhất (x,y) sao cho x>0,y>0
c)Với các giá trị nguyên nào của m thì hệ có nghiệm (x,y) là các số nguyên dương
a) Thay m vào phương trình, ta có:
\(\hept{\begin{cases}\sqrt{2}\times x+4y=10-\sqrt{2}\\x+\sqrt{2}\times y=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{2}x+4y=10-\sqrt{2}\\x=6-\sqrt{2}y\end{cases}}\)
Thay giá trị đã có của x vào phương trình
\(\sqrt{2}\times\left(6-\sqrt{2}y\right)+4y=10-\sqrt{2}\)
\(\Rightarrow y=5-\frac{7\sqrt{2}}{2}\)
Thay giá trị của y vào phương trình:
\(x=6-\sqrt{2}\times\left(5-\frac{7\sqrt{2}}{2}\right)\)
\(\Rightarrow x=13-5\sqrt{2}\)