Cho hpt \(\hept{\begin{cases}2x-my=-3\\mx+3y=4\end{cases}}\)
Với giá trị nguyên nào của m thì hpt có nghiệm duy nhất thỏa mãn x<0;y>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Khi \(m=-1\)ta có HPT : \(\hept{\begin{cases}-x+y=-2\\x-y=0\end{cases}}\)
=> HPT vô nghiệm
b, \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=2m-mx\\x+m\left(2m-mx\right)=m+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=2m-mx\\\left(1-m^2\right)x=-2m^2+m+1\end{cases}}\)( * )
HPT vô nghiệm
<=> ( * ) vô nghiệm
\(\Leftrightarrow\hept{\begin{cases}1-m^2=0\\-2m^2+m+1\end{cases}}\ne0\)
<=> m = 1 hoặc m = -1 mà m khác 1 và -1/2
<=> m = -1
dùng pp thế đỡ biện luận nhiều
từ (2)=> y=(16-mx)/2 thế vào (1)
\(3x-m\left(\frac{16-mx}{2}\right)=-9\Leftrightarrow\left(m^2+6\right)x=16m-18\)
\(x=\frac{16m-18}{m^2+6}\)\(\Rightarrow y=16-\frac{m\left(16m-18\right)}{m^2+6}=\frac{18m+16.6}{m^2+6}\)
a) vì m^2+6 khác 0 mọi m => hệ có nghiệm duy nhất với mọi m
b)
\(\hept{\begin{cases}x=1,4\\y=6,6\end{cases}\Rightarrow m}\)
c) x+y=7=> \(\frac{16m-18+18m+16.6}{m^2+6}=7\Rightarrow m\)
Hệ phương trình: \(\hept{\begin{cases}-2mx+y=5\\mx+3y=1\end{cases}}\)
Với \(m\ne0\)hệ phương trình có 2 nghiệm riêng biệt là \(x=-\frac{2}{m};y=1\)
Để hệ phương trình có nghiệm duy nyaats thỏa mãn x - y = 2 thì
\(-\frac{2}{m}-1=2\Rightarrow-\frac{2}{m}=1+2=3\)
\(\Rightarrow3m=-2.1\Rightarrow m=-\frac{2}{3}\left(TMĐKx\ne0\right)\)
Vậy ...........................
Từ đề ta rút ra pt \(\frac{\left(m-2\right)x+5}{3}=\frac{3-x}{m}\)
\(\Leftrightarrow m^2x-2mx+5m-9+3x=0\\ \Leftrightarrow x\left(m^2-2m+3\right)+5m-9=0\)
Vì đây là pt bậc nhất nên chỉ có 1 nghiệm duy nhất\(x=\frac{9-5m}{m^2-2m+3}\)
\(D=m\left(m-2\right)+3=m^2-2m+3\)
hpt có nghiệm duy nhất\(\Leftrightarrow D\ne0\)mà \(D=m^2-2m+3=\left(m-1\right)^2+2\ne0,\forall m\)
\(\Rightarrow\)hpt luôn có nghiệm duy nhất
nghiệm duy nhất đó là:\(\hept{\begin{cases}x=\frac{D\left(x\right)}{D}\\y=\frac{D\left(y\right)}{D}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{-5m+9}{m^2-2m+3}\\y=\frac{3m-1}{m^2-2m+3}\end{cases}}\)