K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

<=> \(\left(\frac{x-ab}{a+b}-c\right)+\left(\frac{x-ac}{a+c}-b\right)+\left(\frac{x-bc}{b+c}-a\right)=0\)

<=>\(\frac{x-ab-ac-bc}{a+b}+\frac{x-ab-ac-bc}{a+c}+\frac{x-ab-ac-bc}{b+c}=0\)

<=>\(\left(x-ab-ac-bc\right)\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)=0\)

Vì \(a\ne-b;b\ne-c;c\ne-a\) nên tổng 3 phân số kia khác 0

=> (x-ab-ac-ca)=0

=>x=ab+ac+ca

18 tháng 12 2019

\(\frac{x-ab}{a+b}+\frac{x-ac}{a+c}+\frac{x-bc}{b+c}=a+b+c\)

\(\frac{x-ab}{a+b}-c+\frac{x-ac}{a+c}-b+\frac{x-bc}{b+c}-a=0\)

\(\frac{x-ab-ac-bc}{a+b}+\frac{x-ac-ba-bc}{a+c}+\frac{x-bc-ab-ac}{b+c}=0\)

\(\left(x-ab-ac-bc\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)=0\)

\(x-ab-ac-bc=0\)

\(x=ab+ac+bc\)

31 tháng 12 2016

\(\Rightarrow\)\(\frac{a+b-x}{c}+\frac{b+c-x}{a}+\frac{c+a-x}{b}=1-\frac{4x}{a+b+c}\)

\(\Leftrightarrow\)\(\frac{a+b+c-x}{c}+\frac{b+c+a-x}{a}+\frac{c+a+b-x}{b}=4-\frac{4x}{a+b+c}\)(Vế trái cộng mỗi phân số với 1 thì vế phải +3)

\(\Leftrightarrow\)\(\left(a+b+c-x\right)\left(\frac{1}{c}+\frac{1}{b}+\frac{1}{a}\right)=4\left(a+b+c-x\right).\frac{1}{a+b+c}\)

+ Xét \(a+b+c-x=0\Rightarrow x=a+b+c\)

+ Xét \(a+b+c-x\)khác 0 \(\Rightarrow\)\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=4\left(\frac{1}{a+b+c}\right)\)

Ta có : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{a+b+c}>4\left(\frac{1}{a+b+c}\right)\)(bất đẳng thức COSY đó bạn)

như vậy là phương trình vô nghiệm

1 tháng 1 2017

Sai rồi nha bạn Nguyễn Thuỳ Trang.

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{4}{a+b+c}\) vẫn được mà.

Đề có cho \(a,b,c\) dương đầu mà dùng Cauchy như đúng rồi vậy! Cẩn thận một chút.

5 tháng 7 2019

Em(mình) thử nhé, ko chắc đâu

3/ Ta có \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+2abc\)

\(=\left[ab\left(a+b\right)+abc\right]+\left[bc\left(b+c\right)+abc\right]+\left[ca\left(c+a\right)+ca\right]-abc\)

\(=\left(a+b+c\right)ab+\left(a+b+c\right)bc+\left(a+b+c\right)ca-abc\)

\(=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)= -abc

Suy ra \(P=\frac{-abc}{abc}=-1\)

Vậy..