Cho tam giác đều ABC. Trên tia AB lấy điểm D sao cho B là trung điểm của AD.
a) Chứng minh tam giác BCD là tam giác cân.
b) Tính các góc của tam giác BCD.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét hai tam giác vuông: ∆ABC và ∆ADC có:
AC chung
AB = AD (gt)
⇒ ∆ABC = ∆ADC (hai cạnh góc vuông)
b) Do ∆ABC = ∆ADC (cmt)
⇒ ∠BCA = ∠DCA (hai góc tương ứng)
⇒ CA là tia phân giác của ∠BCD
b) vì tam giác ABC là tam giác đều
\(\Rightarrow\)góc DBC=60 độ.
xét tam giác BDC và tam giác ADC có:
BD=AD(GT)
[góc DBC = góc DAC=60 độ (vì tam giác ABC đều)] hoặc [DC là cạnh chung]
BC=AC(GT)
\(\Rightarrow\)tam giác BDC=tam giác ADC(c.g.c hoặc c.c.c)
\(\Rightarrow\)góc BDC=góc ADC=90 độ( vì góc BDC+ góc ADC=180 độ).
áp dụng định lí tổng 3 góc bằng 180 độ vào tam giác BDC có
góc DBC+góc BDC+góc DCB= 180 độ
\(\Rightarrow\)góc DCB= 180 độ - 60 độ - 90 độ= 30 độ.
a) Xét ΔAMC và ΔDMB có
AM=DM(M là trung điểm của AD)
\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)
MC=MB(M là trung điểm của BC)
Do đó: ΔAMC=ΔDMB(c-g-c)
⇒\(\widehat{CAM}=\widehat{BDM}\)(hai góc tương ứng)
mà \(\widehat{CAM}\) và \(\widehat{BDM}\) là hai góc ở vị trí so le trong
nên AC//BD(Dấu hiệu nhận biết hai đường thẳng song song)
b) Xét ΔAMB và ΔDMC có
AM=DM(M là trung điểm của AD)
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔAMB=ΔDMC(c-g-c)
⇒AB=CD(Hai cạnh tương ứng)
Ta có: ΔAMC=ΔDMB(cmt)
nên AC=BD(Hai cạnh tương ứng)
Xét ΔABC và ΔDCB có
AB=DC(cmt)
AC=DB(cmt)
BC chung
Do đó: ΔABC=ΔDCB(c-c-c)
a: AB<AC<BC
=>góc C<góc B<góc A
b: Xét ΔABC vuông tại A và ΔADC vuông tại A có
AB=AD
AC chung
=>ΔABC=ΔADC
=>CB=CD
=>ΔCBD cân tại C
a) Xét △ABC vuông tại A có :
AB2+AC2=BC2(định lý py-ta-go)
⇒ AC2=BC2-AB2
⇒ AC2=102-62
⇒ AC2=100-36
⇒ AC2=64
⇒ AC=8
Vậy AC=8cm
b)
Xét △ABC và △ADC có :
AC chung
AB=AD(gt)
∠BAC=∠DAC(=90)
⇒△ABC=△ADC(c-g-c)
⇒BC=DC(2 cạnh tương ứng)
Xét △BCD có BC=DC(cmt)
⇒△BCD cân tại C (định lý tam giác cân)
c)
Xét △BCD cân tại C có
K là trung điểm của BC (gt)
A là trung điểm của BD (gt)
⇒DK , AC là đường trung tuyến của △BCD
mà DK cắt AC tại M nên M là trọng tâm của △BCD
⇒CM=2/3AC
⇒CM=2/3.8
⇒CM=16/3cm
d)
Xét △AMQ và △CMQ có
MQ chung
MA=MC(gt)
∠AMQ=∠CMQ(=90)
⇒△AMQ=△CMQ(C-G-C)
⇒∠MAQ=∠C2(2 góc tương ứng )
QA=QC( 2 cạnh tương ứng)
Vì △ABC=△ADC(theo b)
⇒∠C1=∠C2(2 góc tương ứng)
⇒∠C1=∠MAQ
mà 2 góc này có vị trí SLT
⇒AQ//BC
⇒∠QAD=∠CBA( đồng vị )
mà∠CBA=∠CDA(△BDC cân tại C)
⇒∠QAD=∠QDA
⇒△ADQ cân tại Q
⇒QA=QD
mà QA=QC(cmt)
⇒DQ=CQ
⇒BQ là đường trung tuyến của△BCD
⇒B,M,D thẳng hàng
a: AB<AC<BC
=>góc C<góc B<góc A
b: Xet ΔABC vuông tại A và ΔADC vuông tại A có
AB=AD
AC chung
=>ΔABC=ΔADC
=>CB=CD
=>ΔCBD cân tại C
c: Xet ΔCBD có
CA,BE là trung tuyến
CA căt EB tại I
=>I là trọng tâm
=>DI đi qua trung điểm của BC
a, Xét \(\Delta\) ABC có :
AB=AC
mà BD=AB
=> BCD cân tại B
b, Vì CB là đường trung tuyến của \(\Delta\) ACD
mà B là trung điểm của AD => \(\Delta\)ACD vuông tại C
Có \(\Delta\) ACB đều => ^BAC, ^ACB + ^ABC = 600
=> ^BCD = ^BDC = ^ACD-^ACB = 900- 600 =300
=> ^DBC = 1800- ^BCD- ^BDC = 1800-300-300=1200
a, Ta có :
ABC đều => AB=AC=BC
B là trung điểm của AD=> DB=BA
=> BC=BD =>Tam giác BCD cân => đpcm
b) Tính các góc của tam giác BCD
góc DBC =góc BAC+góc ACB (góc ngoài của tam giác )
ABC đều => A=B=C=60 độ
=> góc DBC =120 độ
=> góc BDC = góc BCD = \(\frac{180^0-120^0}{2}=30^0\)