tìm các cặp số nguyên x y
x(y+2)=-8
xy-2x-2y=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=>4x2+8xy+4y2 +x2-2x+1+y2+2y+1=0
<=>(2x+2y)2+(x-1)2+(y+1)2=0
<=>(2x+2y)2=0 và (x-1)2=0 và (y+1)2=0
*(x-1)2=0
<=> x-1=0
<=>x=1
*(y+1)2
<=> y+1=0
<=> y=-1
Vậy x=1;y= -1
5x^2+5y^2+8xy-2x+2y+2 = 0
<=>4x^2 + 8xy + 4y^2 + x^2 - 2x + 1 + y^2 + 2y + 1 = 0
<=> 4(x + y)^2 + (x - 1)^2 + (y + 1)^2 = 0 (1)
mà 4(x + y)^2 >= 0;(x - 1)^2 >=0; (y + 1)^2 >= 0
=> Để (1) có nghiệm thì đồng thời x + y = 0; x - 1 = 0; y + 1 = 0
<=> x = 1, y = -1.
\(\Leftrightarrow2x^2-x+1=xy+2y\)
\(\Leftrightarrow2x^2-x+1=y\left(x+2\right)\)
\(\Leftrightarrow y=\dfrac{2x^2-x+1}{x+2}=2x-5+\dfrac{11}{x+2}\)
Do y nguyên \(\Rightarrow\dfrac{11}{x+2}\) nguyên \(\Rightarrow x+2=Ư\left(11\right)\)
Mà x nguyên dương \(\Rightarrow x+2\ge3\Rightarrow x+2=11\Rightarrow x=9\)
\(\Rightarrow y=14\)
Vậy \(\left(x;y\right)=\left(9;14\right)\)
2x2y - x2 -2y - 2 = 0
=>2x2y-x2-2y+1 = 3
=>(2x2y-x2)-(2y-1)=3
=>x2(2y-1)-(2y-1)=3
=>(x2-1)(2y-1)=3
=>x2-1 và 2y-1 thuộc Ư(3)={3;1;-1;-3}
Xét x2-1=3 =>x2=4 =>x=±2 =>2y-1=1 =>y=1
Xét x2-1=1 =>x2=2 (Loại vì x,y nguyên)
Xét x2-1=-1 =>x2=0 =>x=0 =>2y-1=-3 =>y=-1
Xét x2-1=-3 =>x2=-2 (Loại vì bình phương 1 số luôn \(\ge\)0>-2)
Vậy với x=±2 thì y=1 với x=0 thì y=-1
⇔2x2−x+1=xy+2y⇔2x2−x+1=xy+2y
⇔2x2−x+1=y(x+2)⇔2x2−x+1=y(x+2)
⇔y=2x2−x+1x+2=2x−5+11x+2⇔y=2x2−x+1x+2=2x−5+11x+2
Do y nguyên ⇒11x+2⇒11x+2 nguyên ⇒x+2=Ư(11)⇒x+2=Ư(11)
Mà x nguyên dương ⇒x+2≥3⇒x+2=11⇒x=9⇒x+2≥3⇒x+2=11⇒x=9
⇒y=14⇒y=14
Vậy (x;y)=(9;14)
a, x.( y + 2 ) = -8
Ta có bảng sau :
x
1
-1
8
-8
2
-2
4
-4
y + 2
-8
8
-1
1
-4
4
-2
2
y
-10
6
-3
-1
-6
2
-4
0
Bạn tự kết luận nha !
b, xy - 2x - 2y = 0
x.( y - 2 ) - 2y - 4 = -4
x.( y - 2 ) - 2.( y - 2 ) = -4
( x - 2 ) . ( y - 2 ) = -4
Ta có bảng sau :
x – 2
-1
1
-4
4
2
-2
y - 2
4
-4
1
-1
-2
2
x
1
3
-2
6
4
0
y
6
-2
3
1
0
4
Bạn tự kết luận nha !
#Học tốt#
Vì x,y nguyên suy ra x và y+2 nguyên
nên x và y+2 thuộc ước nguyên của (-8)
Ta có bảng sau
Tự kết luận nhé
b) x.(y-2) - 2.(y-2) =4
hay (x-2).(y-2) = 4
Làm tương tự như trên nhé