Cho tam giác ABC cân tại A . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB
lấy điểm E sao cho BD= CE . Kẻ BH vuông góc với AD tại H , kẻCK vuông góc với AE tại K . Gọi I là giao điểm của hai đường thẳng BH và CK . Chứng minh rằng:
a) ABH =ACK .
b) AI là tia phân giác của DAE .
c) HK DE / /
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔACE có
AB=AC
ˆABD=ˆACE
BD=CE
Do đó: ΔABD=ΔACE
Suy ra: AD=AE
Xét ΔBHD vuông tại H và ΔCKE vuông tại K có
BD=CE
ˆD=E^
Do đó: ΔBHD=ΔCKE
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
ˆHAB=ˆKAC
Do đó: ΔAHB=ΔAKC
Vì tam giác ABC cân tại Asuy ra AB=AC, góc B=góc C
mà góc ABC + góc ABD = 1800, góc ACB + góc ACE = 1800
suy ra góc ABD = góc ACE
Xét tam giác ABD và tam giác ACE
có AB=AC (CMT); góc ABD = góc ACE; BD=CE (GT)
suy ra tam giác ABD = tam giác ACE (c.g.c) (*)
suy ra góc DAB=góc EAC (hai góc tương ứng)
Xét tam giác vuông AHB và tam giác vuông ACK
có AB=AC (CMT), góc DAB=góc EAC (CMT)
suy ra tam giác AHB = tam giác ACK ( cạnh huyền-góc nhọn) (1)
b) Tư (1) suy ra AH=AK (hai cạnh tương ứng) (2)
Xét tam giác vuông AHI và tam giác vuông AKI
có AI chung, AH=AK (CMT)
suy ra tam giác AHI = tam giác AKI (cạnh huyền-cạnh góc vuông)
suy ra góc HAI=góc KAI
suy ra AI là tia phân giác của góc DAE
c) Từ (2) suy ra tam giác AHK cân tại A
suy ra góc AHK = góc AKH (3)
tam giác AHK có góc HAK + góc AHK + góc AKH=1800 (4)
Từ (3) và (4) suy ra góc AHK = (1800- góc AHK ) :2 (5)
Từ (*) suy ra tam giác ADE cân tại A
suy ra góc ADE = góc AED (6)
tam giác ADE có góc EAD + góc ADE + góc AÈD=1800 (7)
Từ (6) và (7) suy ra góc ADE = (1800- góc DAE ) :2 (8)
Từ (5) và (8) suy ra góc ADE = góc AHK
mà góc ADE đồng vị với góc AHK
suy ra HK//DE
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{HAB}=\widehat{KAC}\)
Do đó: ΔAHB=ΔAKC
a: Xét ΔABD và ΔACE có
\(\widehat{BAD}=\widehat{CAE}\)
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
Do đó: ΔABD=ΔACE
Suy ra: BD=CE
b: Xét ΔHDB vuông tại H và ΔKEC vuông tại K có
BD=CE
\(\widehat{D}=\widehat{E}\)
Do đó: ΔHDB=ΔKEC
Suy ra: BH=CK
c: Ta có: ΔHDB=ΔKEC
nên \(\widehat{HBD}=\widehat{KCE}\)
mà \(\widehat{IBC}=\widehat{HBD}\)
và \(\widehat{ICB}=\widehat{KCE}\)
nên \(\widehat{IBC}=\widehat{ICB}\)
=>ΔIBC cân tại I
=>IB=IC
Xét ΔABI và ΔACI có
AB=AC
BI=CI
AI chung
DO đó: ΔABI=ΔACI
Suy ra: \(\widehat{BAI}=\widehat{CAI}\)
hay AI là tia phân giác của góc BAC
Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
Suy ra: AD=AE
Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
\(\widehat{BAH}=\widehat{CAK}\)
Do đó: ΔABH=ΔACK
Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó:ΔABD=ΔACE
Suy ra: AD=AE
Xét ΔHBD vuông tại H và ΔKCE vuông tại K có
BD=CE
\(\widehat{HDB}=\widehat{KEC}\)
Do đó: ΔHBD=ΔKCE
Suy ra: \(\widehat{HBD}=\widehat{KCE}\)
mà \(\widehat{HBD}=\widehat{IBC}\)
và \(\widehat{KCE}=\widehat{ICB}\)
nên \(\widehat{IBC}=\widehat{ICB}\)
hay ΔIBC cân tại I
Xét ΔIBD và ΔICE có
IB=IC
\(\widehat{IBD}=\widehat{ICE}\)
BD=CE
Do đó: ΔIBD=ΔICE
Suy ra: ID=IE
Xét ΔADI và ΔAEI có
AD=AE
DI=EI
AI chung
Do đó: ΔADI=ΔAEI
Suy ra: \(\widehat{DAI}=\widehat{EAI}\)
hay AI là tia phân giác của góc DAE
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
Xét ΔBHD vuông tại H và ΔCKE vuông tại K có
BD=CE
góc D=góc E
=>ΔBHD=ΔCKE
=>BH=CK
Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
BH=CK
=>ΔAHB=ΔAKC
b: góc IBC=góc HBD
góc ICB=góc KCE
mà góc HBD=góc KCE
nên góc IBC=góc ICB
=>IB=IC
IB+BH=IH
IC+CK=IK
mà IB=IC; BH=CK
nên IK=IH
Xét ΔAHI vuông tại H và ΔAKI vuông tại K có
AH=AK
AI chung
=>ΔAHI=ΔAKI
=>góc HAI=góc KAI
=>AI là phân giác của góc DAE
c: Xet ΔADE có AH/AD=AK/AE
nên HK//DE