K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác BMDN có 

BM//DN

BM=DN

Do đó: BMDN là hình bình hành

31 tháng 10 2021

a: Xét tứ giác BMDN có

BM//DN

BM=DN

Do đó: BMDN là hình bình hành

16 tháng 12 2020

a) Ta có: \(AE=EB=\dfrac{AB}{2}\)(E là trung điểm của AB)

\(CF=FD=\dfrac{CD}{2}\)(F là trung điểm của CD)

mà AB=CD(Hai cạnh đối của hình bình hành ABCD)

nên AE=CF=FD=EB

Xét tứ giác AECF có 

AE//CF(AB//CD, E∈AB, F∈CD)

AE=CF(cmt)

Do đó: AECF là hình bình hành(Dấu hiệu nhận biết hình bình hành)

b) Xét tứ giác AEFD có 

AE//FD(AB//CD, E∈AB, F∈CD)

AE=FD(cmt)

Do đó: AEFD là hình bình hành(Dấu hiệu nhận biết hình bình hành)

c) Ta có: AF//CE(Hai cạnh đối trong hình bình hành AECF)

mà H∈AF(gt)

và K∈CE(gt)

nên HF//KC và EK//AH

Xét ΔDKC có 

F là trung điểm của CD(gt)

FH//DK(cmt)

Do đó: H là trung điểm của DK(Định lí 1 về đường trung bình của tam giác)

⇒DH=KH(1)

Xét ΔABH có 

E là trung điểm của AB(gt)

EK//BH(cmt)

Do đó: K là trung điểm của BH(Định lí 1 về đường trung bình của tam giác)

⇒BK=KH(2)

Từ (1) và (2) suy ra DH=HK=KB(đpcm)

a: Xét tứ giác DMBN có

BM//DN

BM=DN

Do đó: DMBN là hình bình hành

b: Xét ΔAKB có 

M là trung điểm của AB

MH//BK

Do đó: H là trung điểm của AK

Xét ΔCHD có 

N là trung điểm của CD

NK//DH

Do đó: K là trung điểm của HC

17 tháng 10 2018

Bài tập: Hình bình hành | Lý thuyết và Bài tập Toán 8 có đáp án

Áp dụng định nghĩa, tính chất và theo giả thiết của hình bình hành, ta có:

Bài tập: Hình bình hành | Lý thuyết và Bài tập Toán 8 có đáp án

Tứ giác AICK có cặp cạnh đối song song và bằng nhau nên AICK là hình bình hành.