Cho tam giác ABC vuông tại A có AB =3cm,AC =4cm hãy tính tỉ số lượng giác của góc c rồi suy ra tỉ số lượng giác của góc b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình đơn giản bạn tự vẽ:)
Áp dụng định lý Pytagoras ta có : BC2 = AB2 + AC2 = 32 + 42 = 25 => BC = 5cm
Ta có : \(\sin B=\frac{AC}{BC}=\frac{4}{5};\cos B=\frac{AB}{BC}=\frac{3}{5};\tan B=\frac{AC}{AB}=\frac{4}{3};\cot B=\frac{AB}{AC}=\frac{3}{4}\)
=> \(\sin C=\cos B=\frac{3}{5};\cos C=\sin B=\frac{4}{5};\tan C=\cot B=\frac{3}{4};\cot C=\tan B=\frac{4}{3}\)
a) Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:
\(AC^2=AB^2+BC^2\)
\(\Leftrightarrow AC^2=3^2+4^2=25\)
hay AC=5(cm)
Xét ΔABC vuông tại B có
\(\sin\widehat{A}=\dfrac{BC}{AC}=\dfrac{4}{5};\cos\widehat{A}=\dfrac{AB}{AC}=\dfrac{3}{5};\)
\(\tan\widehat{A}=\dfrac{BC}{BA}=\dfrac{4}{3};\cot\widehat{C}=\dfrac{BA}{BC}=\dfrac{3}{4}\)
Áp dụng ĐLPTG, ta có:
AC²=AB²+BC²
<=>AC²=3²+4²=25
<=>AC=5(cm)
Xét tam giác ABC vuông tại B ta có:
Sin A=4/5 cos A=3/5 tg A=3/4 cost A=4/3
a: Xét ΔBAC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay BC=5(cm)
b: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=2,4\left(cm\right)\\BH=1,8\left(cm\right)\\CH=3,2\left(cm\right)\end{matrix}\right.\)
\(AC=\sqrt{BC^2-AB^2}=4\left(cm\right)\left(pytago\right)\\ \sin\widehat{B}=\cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{4}{5}\\ \cos\widehat{B}=\sin\widehat{C}=\dfrac{AB}{AC}=\dfrac{3}{5}\\ \tan\widehat{B}=\cot\widehat{C}=\dfrac{AC}{AB}=\dfrac{4}{3}\\ \cot\widehat{B}=\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{3}{4}\)
Áp dụng PTG: \(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\)
\(\sin\widehat{B}=\cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{4}{5}\\ \cos\widehat{B}=\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{3}{5}\\ \tan\widehat{B}=\cot\widehat{C}=\dfrac{AC}{AB}=\dfrac{4}{3}\\ \cot\widehat{B}=\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{3}{4}\)