Cho tam giác ABC, trung tuyến AM. Từ một điểm D trên cạnh BC kẻ đường thẳng song song AM
cắt AB ở E, cắt AC ở F. C/m:
a) DE/MA = DB/BM b) DF/MA = DC/MC c) DE + DF = 2.MA
MÌNH ĐG CẦN GẤP Ạ.
MONG MỌI NGƯỜI GIÚP ĐỠ !!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
theo dlý talét tam giác ABM ta có
DE/AM=BD/BM (1)
tam giác CFD có
DF/AM=CD/CM (2)
cộng vế theo vế ta có:
DE/AM+DF/AM=BD/BM+CD/CM
mà BM=CM ( gt )
suy ra BD/BM+CD/BM=BC/BM=2
suy ra DE/AM+DF/AM=2
suy ra đpcm
Áp dụng định lý talettam giác ABM ta có
DE/AM=BD/BM (1)
tam giác CFD có
DF/AM=CD/CM (2)
cộng vế theo vế ta có:
DE/AM+DF/AM=BD/BM+CD/CM
mà BM=CM ( gt )
=> BD/BM+CD/BM=BC/BM=2
=>DE/AM+DF/AM=2
=> đpcm
a) Xét ∆ABM có DE//AM => \(\dfrac{AE}{AB}=\dfrac{DM}{BM}\)
Mà M là trung điểm của BC => BM=CM
=> \(\dfrac{AE}{AB}=\dfrac{DM}{CM}\)(1)
Xét ∆FDC có AM//FD => \(\dfrac{DM}{MC}=\dfrac{FA}{AC}\)(2)
Từ (1) và (2) => \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\) <=> AE.AC=AF.AB
b) Ta có: \(\dfrac{DF}{AM}=\dfrac{DC}{CM}\)
Mà \(\dfrac{DE}{AM}=\dfrac{BD}{BM}=\dfrac{BD}{CM}\)
=> \(\dfrac{DE+DF}{AM}=\dfrac{BD+DC}{MC}=\dfrac{BC}{MC}=2\)
=> \(DE+DF=2AM\)
Câu hỏi của duy phạm - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
a) Ta có : \(\frac{DF}{AM}=\frac{DC}{MC};\frac{DE}{AM}=\frac{BD}{MB}\)
\(\Rightarrow\frac{DE+DF}{AM}=\frac{BD}{BM}+\frac{DC}{MC}=\frac{BD+DC}{MC}=\frac{BC}{MC}=2\)
Vậy nên DE + DF = 2AM.
b) Theo định lý Ta let ta có:
\(\frac{AE}{AB}=\frac{DM}{BM}=\frac{DM}{MC}=\frac{AF}{AC}\)
\(\Rightarrow\frac{AE}{AF}=\frac{AB}{AC}\)