Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x-\sqrt{x}+\dfrac{5}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+1\ge1\\ A_{min}=1\Leftrightarrow\sqrt{x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{4}\)
Bài 2:
a) Ta có: \(\left|2x-5\right|\ge0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
TÌM GIÁ TRỊ LỚN NHẤT, NHỎ NHẤT CỦA CÁC BIỂU THỨC SAU ( NẾU CÓ) :
A=X−−√+1
B=3(X−−√−1)+7
C=4X−2−−−−−√−3
D=−2017x√+1
E=x+1√x√+2
F=x+2x−−√−5
G=1x2−4x+5√
\(a,A=1000-\left|x+5\right|\)
Vì \(\left|x+5\right|\ge0\Rightarrow\)\(A\ge1000\)
Dấu \("="\) xảy ra khi \(\left|x+5\right|=0\Leftrightarrow x+5=0\)
\(\Leftrightarrow x=-5\)
Vậy \(A_{Max}=1000\Leftrightarrow x=-5\)
Đk: \(2\le x\le4\)
Áp dụng BĐT bunhiacopxki có:
\(P^2=\left(\sqrt{x-2}+3\sqrt{4-x}\right)^2\le\left(1+3^2\right)\left(x-2+4-x\right)\)
\(\Leftrightarrow P^2\le20\)\(\Leftrightarrow P\le2\sqrt{5}\)
Dấu "=" xảy ra khi \(\sqrt{x-2}=\dfrac{\sqrt{4-x}}{3}\) \(\Leftrightarrow x=\dfrac{11}{5}\) (tm đk)
Có \(P^2=8\left(4-x\right)+6\sqrt{\left(x-2\right)\left(4-x\right)}+2\ge2\)\(\Rightarrow P\ge\sqrt{2}\)
Dấu "=" xảy ra khi x=4 (tm)
a,Ta có B = x2-x+x = x2
Mà x2 ≥ 0 với ∀ x.Dấu ''='' xảy ra <=> x=0
Vậy Min B = 0 tại x = 0
b,Ta có 4x-x2+3 = -x2+4x-4+7
= -(x2-4x+4)+7
= -(x-2)2+7
Mà (x-2)2 ≥ 0 với ∀ 0 => -(x-2)2 ≤ 0 => -(x-2)2+7 ≤ 7
Dâu ''='' xảy ra <=> -(x-2)2 = 0 <=> x-2 = 0 <=> x=2
Vậy Max c = 7 tại x = 2.
c,Ta có 2x-2x2-5 = -x2+2x-1-x2-4
= -(x-1)2-x2-4
Mà (x-1)2 ≥ 0 => -(x-1)2 ≤ 0
x2 ≥ 0 => -x2 ≤ 0
Ta có D đạt GTLN <=> -(x-1)2 = 0 hoặc -x2 = 0
-Xét -(x-1)2 = 0 <=> x = 1. Khi đó ta có D = -5
-Xét -x2 = 0 <=> x = 0. Khi đó ta có D = -5
Vậy Max D = -5 tại x = 0 hoặc x = 1
\(x-\sqrt{x}+\frac{5}{4}\)
\(=\sqrt{x}\left(\sqrt{x}+1\right)+\frac{5}{4}\)
Ta có : \(x>0\)
\(\Leftrightarrow\sqrt{x}>0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}+1\right)>0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}+1\right)+\frac{5}{4}>\frac{5}{4}\)
=> Amin= \(\frac{5}{4}\)
dấu = xảy ra \(\Leftrightarrow\sqrt{x}+1=0\)
\(A=x-\sqrt{x}+\frac{5}{4}\)
\(=x-\sqrt{x}+\frac{1}{4}+1\)
\(=\left(\sqrt{x}-\frac{1}{2}\right)^2+1\ge1\)