Cho S = 1-3+3 mũ 2- 3 mũ 3+...+ 3 mũ 98- 3 mũ 99
a) Chứng minh rằng S là bội của -20
b) Tính S, từ đó suy ra 3 mũ 100 chia 4 dư 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bn ấn vào cái hình có chữ M nằm ngang rồi viết lạ đề đc ko bn viết số mũ bn nhấn vào cái có chữ x rồi có cái hình vuông màu xám ở trên chữ x
\(a,S=1-3+3^2-3^3+...+3^{98}-3^{99}\)
\(=\left(1-3+3^2-3^3\right)+...+3^{96}-3^{97}+3^{98}-3^{99}\)
\(=\left(1-3+3^2-3^3\right)+...+3^{96}\left(1-3+3^2-3^3\right)\)
\(=\left(1-3+3^2-3^3\right)\left(1+3^4+...+3^{92}+3^{96}\right)\)
\(=-20.\left(1+3^4+...+3^{92}+3^{96}\right)\)là bội của -20
b, \(S=1-3+3^2-3^3+...+3^{98}-3^{99}\)
\(3S=3-3^2+3^3-3^4+...+3^{99}-3^{100}\)
\(3S+S=1-3^{100}\)
\(S=\frac{1-3^{100}}{4}\)
Do S chia hết cho -20 nên S chia hết cho 4 do đó 1-3^100 chia hết cho 4 suy ra 3^100 chia 4 dư 1
a) S=\(1-3+3^2-3^3+...+3^{98}-3^{99}.\)
=\((1-3+3^2-3^3)+...+3^{96}-3^{97}+3^{98}-3^{99}.\)
=\(\left(1-3+3^2-3^3\right)+..+3^{96}\left(1-3+3^2-3^3\right)\)
=(\(1-3+3^2-3^3\))(1+\(3^4+...+3^{92}+3^{96})\)
=-20(1+\(3^4+...+3^{92}+3^{96})\)là bội của -20
b)S = 1 - 3 + 3^2 - 3^3 +...+ 3^98 - 3^99
=> 3S= 3 - 3^2 + 3^3 - 3^4 +...+ 3^99 - 3^100
=> 3S+S = 1 - 3^100
=>4S=1 - 3^100
=> S = \(\frac{1-3^{100}}{^4}\)
Do S chia hết cho -20 nên S chia hết cho 4 do đó 1-3^100 chia hết cho 4 suy ra 3^100 chia 4 dư 1