Cho tam giác ABC nhọn. Dựng ra phía ngoài 2 tam giác đều ABE, ACF, lại dựng hbh AEPF. CMR PBC là tam giác đều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : góc EBN = góc FCA(1)
lại có : góc EBC = 90 độ ; FCB = 90 độ
=> EBC = FBC (2)
từ (1) và (2) suy ra:
góc PBC = góc PCB
tiếp tục có:
\(\widehat{BPH}+\widehat{CPH}=2.\widehat{EBP}\)
mà \(2.\widehat{EBP}=\widehat{PBC}\)
\(\Rightarrow\widehat{BPH}+\widehat{CPH}=\widehat{PBC}\)
\(mà\widehat{BPH}+\widehat{CPH=}\widehat{BPC}\)
\(\Rightarrow\widehat{PBC}=\widehat{PBC}=\widehat{PCB}\)
từ đó suy ra : tam giác PBC là tam giác đều
( bn không hỉu chỗ nào thì hỏi lại mình nhe)
Theo hình vẽ thì $PBC$ làm sao mà là tam giác đều được nhỉ?
Xét tam giác ABD và tam giác FBC có:
AB=FB ( cạnh tam giác đều FAB)
DB=BC ( cạnh tam giác đều DBC)
góc ABD = góc FBC ( cùng bằng góc ABC + 60 độ)
Suy ra tam giác ABD = tam giác FBC (C.G.C)
=> FC=AD
ΔABC vuông tại A có AM là trung tuyến
nên MA=MB=MC
AE=EB
AM=BM
=>EM là trung trực của AB
=>EM vuông góc AB
=>EM//AC
MA=MC
FA=FC
=>MF là trung trực của AC
=>MF vuông góc AC
+>ME vuông góc MF
=>góc GMF=90 độ
Gọi D,K lần lượt là trung điểm của AB,AC
=>DM=AC/2; MK=AB/2
GD=1/3ED=1/3*AB*căn 3/2=AB*căn 3/6
KF=AC*căn 3/2
GM=căn 3/6AB+1/2AC
MF=căn 3/2*AC+1/2*AB
=>GN=căn 3/3(AB/2+căn 3/2*AC)
=MF*căn 3/3
=>MF=căn 3*GM
=>góc GFM=30 độ
=>góc MGF=60 độ