K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2020

\(\frac{x.\left(x-y\right)}{y.\left(x-y\right)}=\frac{3}{10}:\frac{-3}{50}=-5=\frac{x}{y}\)\(\frac{x}{y}\)

\(x=-5y\Rightarrow-5y\left(-5y-y\right)=\frac{3}{10}\Rightarrow30y^2=\frac{3}{10}\Rightarrow y=\frac{1}{10}\) hoặc \(y=\frac{-1}{10}\)

Với \(y=\frac{1}{10}\Rightarrow x=-5.\frac{1}{10}=\frac{-1}{2}\)

Với \(y=\frac{-1}{10}\Rightarrow x=\frac{1}{2}\)

25 tháng 2 2020

Bạn ơi

x=-5y

=>-5y(-5y-y)=3/10

Chỗ đó mik ko hiểu lắm, bn giải thik giùm mik zới

20 tháng 2 2020

\(x-2xy+y=0\)

\(\Rightarrow x-\left(2xy-y\right)=0\)

\(\Rightarrow x-y\left(2x-1\right)=0\)

\(\Rightarrow2x-2y\left(2x-1\right)=0\)

\(\Rightarrow\left(2x-1\right)-2y\left(2x-1\right)=-1\)

\(\Rightarrow\left(2x-1\right)\left(1-2y\right)=-1\)

\(\Rightarrow\left(2x-1;1-2y\right)=\left(-1;1\right);\left(1;-1\right)\)

\(\Rightarrow\left(x;y\right)=\left(0;0\right);\left(1;1\right)\)

a) Ta có: \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)

\(=x^2+2x+y^2-2y-2xy+37\)

\(=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+37\)

\(=\left(x-y\right)^2+2\left(x-y\right)+37\)

\(=\left(x-y\right)\left(x-y+2\right)+37\)(1)

Thay x-y=7 vào biểu thức (1), ta được:

\(A=7\cdot\left(7+2\right)+37=7\cdot9+37=100\)

Vậy: Khi x-y=7 thì A=100

b) Ta có: \(x+y=2\)

\(\Leftrightarrow\left(x+y\right)^2=4\)

\(\Leftrightarrow x^2+y^2+2xy=4\)

\(\Leftrightarrow2xy+10=4\)

\(\Leftrightarrow2xy=-6\)

\(\Leftrightarrow xy=-3\)

Ta có: \(A=x^3+y^3\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)\)(2)

Thay x+y=2; \(x^2+y^2=10\) và xy=-3 vào biểu thức (2), ta được:

\(A=2\cdot\left(10+3\right)=2\cdot13=26\)

Vậy: Khi x+y=2 và \(x^2+y^2=10\) thì A=26

16 tháng 2 2021

\(\Rightarrow A=x^2+2x+y^2-2y-2xy+37=x^2-2xy+y^2+2\left(x-y\right)+37=\left(x-y\right)^2+2\left(x-y\right)+37=7^2+2\cdot7+37=100\)

\(\Rightarrow A=x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)=\left(x+y\right)\left[x^2+y^2-\dfrac{\left(x+y\right)^2-\left(x^2+y^2\right)}{2}\right]=2\cdot\left[10+3\right]=2\cdot13=26\) \(\Rightarrow\left\{{}\begin{matrix}x+y=-z\\x+z=-y\\y+z=-x\end{matrix}\right.\) \(\Rightarrow P=\left(\dfrac{x+y}{y}\right)\left(\dfrac{y+z}{z}\right)\left(\dfrac{x+z}{x}\right)=-\dfrac{z}{y}\cdot\dfrac{-x}{z}\cdot-\dfrac{y}{x}=-1\)

8 tháng 9 2021

\(\dfrac{x}{3}=x+y=20\Rightarrow x=60\Rightarrow60+y=20\Rightarrow y=-40\)

8 tháng 9 2021

Ta có:

\(\dfrac{x}{3}=20\)

\(\Rightarrow\)\(x=60\)

Lại có:

\(x+y=20\)

\(\Rightarrow\)\(y=20-60\)

\(\Rightarrow\)\(y=-40\)

Vây x = 60 và y = - 40

15 tháng 8 2021

áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{2x-3y}{4-9}=-\dfrac{54}{5}\)

\(\dfrac{x}{2}=-\dfrac{54}{5}\Rightarrow x=-\dfrac{54}{5}.2=-\dfrac{108}{5}\)

\(\dfrac{y}{3}=-\dfrac{54}{5}\Rightarrow y=-\dfrac{54}{5}.3=-\dfrac{162}{5}\)

Vậy \(x=-\dfrac{108}{5};y=-\dfrac{162}{5}\)

 

Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}\)

nên \(\dfrac{2x}{4}=\dfrac{3y}{9}\)

mà 2x-3y=54

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{2x-3y}{4-9}=\dfrac{-54}{5}\)

Do đó: \(x=-\dfrac{108}{5};y=-\dfrac{162}{5}\)

24 tháng 2 2019

                           Giải

\(\frac{3+x}{5+y}=\frac{3}{5}\)

\(\Leftrightarrow5\left(3+x\right)=3\left(5+y\right)\)

\(\Leftrightarrow15+5x=15+5y\)

\(\Leftrightarrow5x=5y\)( cùng bớt đi 15 )

\(\Leftrightarrow x=y\) ( cùng chia cho 5 )

Mà \(x+y=16\Leftrightarrow x+x=16\Leftrightarrow x=y=8\)

Vậy \(x=y=8\)

24 tháng 2 2019

Bạn gì đó ơi , hình như bạn làm sai chỗ \(3\left(5+y\right)\)

21 tháng 12 2022

ta có : `x/2 = y/3 = z/4=> (2x)/4 =(3y)/9 = z/4`

`=> (2x)/4 =(3y)/9 = z/4` và `2x + 3y - z = 27`

Áp dụng t/c dãy tỉ số bằng nhau ta có:

`(2x)/4 =(3y)/9 = z/4 =(2x + 3y - z)/(4+9-4)=27/9=3`

`=>x/2=3=>x=3.2=6`

`=>y/3=3=>x=3.3=9`

`=>z/4=3=>z=3.4=12`

13 tháng 10 2021

\(\dfrac{x}{-3}=\dfrac{y}{5}\)\(\dfrac{x}{-6}=\dfrac{y}{10}\)

\(\dfrac{y}{2}=\dfrac{z}{7}\)\(\dfrac{y}{10}=\dfrac{z}{35}\)

\(\dfrac{x}{-6}=\dfrac{y}{10}=\dfrac{z}{35}\)

\(\dfrac{2x}{-12}=\dfrac{3y}{30}=\dfrac{z}{35}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{2x}{-12}=\dfrac{3y}{30}=\dfrac{z}{35}=\dfrac{2x-3y+z}{-12-30+35}=\dfrac{42}{-7}=-6\)

\(\left\{{}\begin{matrix}x=-6.-6=36\\y=-6.10=-60\\z=-6.35=-210\end{matrix}\right.\)

13 tháng 10 2021

\(a,\dfrac{x}{-3}=\dfrac{y}{5}\Rightarrow\dfrac{x}{-6}=\dfrac{y}{10};\dfrac{y}{2}=\dfrac{z}{7}\Rightarrow\dfrac{y}{10}=\dfrac{z}{35}\\ \Rightarrow\dfrac{x}{-6}=\dfrac{y}{10}=\dfrac{z}{35}\)

Áp dụng t/c dtsbn:

\(\dfrac{x}{-6}=\dfrac{y}{10}=\dfrac{z}{35}=\dfrac{2x}{-12}=\dfrac{3y}{30}=\dfrac{2x-3y+z}{-12-30+35}=\dfrac{42}{-7}=-6\\ \Rightarrow\left\{{}\begin{matrix}x=36\\y=-60\\z=-210\end{matrix}\right.\)

\(b,6x=4y=z\Rightarrow\dfrac{6x}{12}=\dfrac{4y}{12}=\dfrac{z}{12}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{12}\)

Áp dụng t/c dtsbn:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{12}=\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{2x-3y+z}{4-9+12}=\dfrac{42}{7}=6\\ \Rightarrow\left\{{}\begin{matrix}x=12\\y=18\\z=72\end{matrix}\right.\)

\(c,x=-2y\Rightarrow\dfrac{x}{-2}=y\Rightarrow\dfrac{x}{-4}=\dfrac{y}{2}\\ 7y=2z\Rightarrow\dfrac{y}{2}=\dfrac{z}{7}\\ \Rightarrow\dfrac{x}{-4}=\dfrac{y}{2}=\dfrac{z}{7}\)

Áp dụng t/c dtsbn:

\(\dfrac{x}{-4}=\dfrac{y}{2}=\dfrac{z}{7}=\dfrac{2x}{-8}=\dfrac{3y}{6}=\dfrac{2x-3y+z}{-8+6+7}=\dfrac{42}{5}\\ \Rightarrow\left\{{}\begin{matrix}x=-\dfrac{168}{5}\\y=\dfrac{84}{5}\\z=\dfrac{294}{5}\end{matrix}\right.\)