K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài tập:Bài 1: Cho D ABC cân tại A. Vẽ AH vuông góc với BC tại H, có AB = 5cm, BC = 6cm.1) Chứng minh hai tam giác ABH và ACH bằng nhau2) Tìm độ dài đoạn AH?c) Hãy cho biết trong tam giác trên AH là đường nào trong các đường sau: đường trung tuyến, đường cao, đường phân giác, đường trung trực? Bài 2:  Cho tam giác ABC cân tại A, gọi H là trung điểm của cạnh BC. Từ H vẽ HM vuông góc AB tại M, HN vuông AC...
Đọc tiếp

Bài tập:

Bài 1: Cho D ABC cân tại A. Vẽ AH vuông góc với BC tại H, có AB = 5cm, BC = 6cm.

1) Chứng minh hai tam giác ABH và ACH bằng nhau

2) Tìm độ dài đoạn AH?

c) Hãy cho biết trong tam giác trên AH là đường nào trong các đường sau: đường trung tuyến, đường cao, đường phân giác, đường trung trực?

 

Bài 2:  Cho tam giác ABC cân tại A, gọi H là trung điểm của cạnh BC. Từ H vẽ HM vuông góc AB tại M, HN vuông AC tại N.

a) Chứng minh hai tam giác ABH và ACH bằng nhau

b) Chứng minh HM = HN

c) Chứng minh AM = AN

d) AH có là đường trung trực của tam giác ABC hay không? Vì sao?

 

Bài 3: Cho tam giác ABC có ba góc nhọn, vẽ hai đường cao AD và BE cắt nhau tại H. Cho biết góc ACB = 50 độ.

a) Chứng minh CH vuông góc AB

b) Tính góc BHD và góc DHE?

 

Bài 4: Cho tam giác ABC vuông tại A, BD là tia phân giác của góc B, trên tia BC lấy điểm E sao cho BA = BE, gọi H là giao điểm của AB với DE.

a) Chứng minh DE vuông góc BE

b) Chứng minh BD là đường trung trực của AE

c) Chứng minh AE song song với HC.

 

 

0

Câu 1: Tam giác ABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC

 => AM=\(\frac{1}{2}\)BC mà AM=6 cm=> BC=12cm.

Tam giác ANB vuông tại A có AN2+AB2=BN2 (Theo Pytago)   mà BN=9cm (gt)

=>AN2+AB2=81        Lại có AN=\(\frac{1}{2}\)AC =>\(\frac{1}{2}\)AC2+AB2=81     (1)

Tam giác ABC vuông tại A có: AC2+AB2=BC=> BC2 - AB= AC2   (2)

Từ (1) và (2) suy ra \(\frac{1}{4}\)* (BC- AB2)+AB2=81       mà BC=12(cmt)

=> 36 - \(\frac{1}{4}\)AB2+AB2=81

=> 36+\(\frac{3}{4}\)AB2=81

=> AB2=60=>AB=\(\sqrt{60}\)

C2

Cho hình thang cân ABCD có đáy lớn CD = 1

C4

Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath

Bài 6 (các câu khác nhau thì không liên quan đến nhau)a) Cho tam giác ABC, kẻ BH  AC ( H  AC); CK  AB ( K  AB). Biết BH = CK.Chứng minh tam giác ABC cân.Tết đến tưng bừng, vui mừng làm ToánGiáo viên: Nguyễn Cao Uyển Mib) Cho Tam giác ABC, gọi M, N lần lượt là trung điểm các cạnh AB, AC. Biết CM =BN. Chứng tỏ tam giác ABC cân.c) Cho tam giác ABC cân tại A, Tia phân giác của góc B và góc C cắt AC và AB...
Đọc tiếp

Bài 6 (các câu khác nhau thì không liên quan đến nhau)
a) Cho tam giác ABC, kẻ BH  AC ( H  AC); CK  AB ( K  AB). Biết BH = CK.
Chứng minh tam giác ABC cân.
Tết đến tưng bừng, vui mừng làm Toán
Giáo viên: Nguyễn Cao Uyển Mi
b) Cho Tam giác ABC, gọi M, N lần lượt là trung điểm các cạnh AB, AC. Biết CM =
BN. Chứng tỏ tam giác ABC cân.
c) Cho tam giác ABC cân tại A, Tia phân giác của góc B và góc C cắt AC và AB lần
lượt tại D và E. Chứng minh BD = CE.
Bài 7: Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia
CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD tại H, CK vuông góc với AE
tại K. Hai đường thẳng HB và KC cắt nhau tại I. Chứng minh rằng:
a) Tam giác ADE cân.
b) Tam giác BIC cân.
c) IA là tia phân giác của góc BIC.
Bài 8: Cho tam giác ABC vuông tại A, có AB = 5cm, BC = 13cm. Kẻ AH vuông góc với
BC tại H. Tính độ dài các đoạn thẳng: AC, AH, BH, CH.
Bài 9: (các câu khác nhau thì không liên quan đến nhau)
a) Cho tam giác ABC vuông tại A, đường cao AH = 2cm. Tính các cạnh của tam giác
ABC biết: BH = 1cm, HC = 3cm.
b) Cho tam giác ABC đều có AB = 5cm. Tính độ dài đường cao BH?
Bài 10: Cho tam giác ABC có góc A nhỏ hơn 900. Vẽ ra phía ngoài tam giác ABC các
tam giác vuông cân đỉnh A là MAB, NAC.
a) Chứng minh: MC = NB.
b) Chứng minh: MC NB 
c) Giả sử tam giác ABC đều cạnh 4 cm. Tính MB, NC và chứng minh MN // BC.

Giúp mình với ạ, mik đang cần gấp

1
6 tháng 2 2022

Ai giúp mik với mik đang cần gấp ạ

1/ cho tam giác ABC vuông tại A , có đường cao AH , phân giác AD biết BD=15cm Dc=20cm Tính AH,AD làm tròn đến chữ số thập phân thứ 2 2/cho tam giác ABC vuông tại A ,đường cao AH ,Trung tuyến AM a) Biết BC=125cm , AB phần AC = 3 phần 4 Tính độ dài hình chiếu của mỗi cạnh góc vuông trên cạnh huyền b) Biết AH=42cm , AB:AC=3:7 .Tính độ dài hình chiếu của mỗi cạnh góc vuông trên cạnh huyền c) Biết AH=48cm ,...
Đọc tiếp

1/ cho tam giác ABC vuông tại A , có đường cao AH , phân giác AD biết BD=15cm Dc=20cm 
Tính AH,AD làm tròn đến chữ số thập phân thứ 2 
2/cho tam giác ABC vuông tại A ,đường cao AH ,Trung tuyến AM 
a) Biết BC=125cm , AB phần AC = 3 phần 4 Tính độ dài hình chiếu của mỗi cạnh góc vuông trên cạnh huyền 
b) Biết AH=42cm , AB:AC=3:7 .Tính độ dài hình chiếu của mỗi cạnh góc vuông trên cạnh huyền 
c) Biết AH=48cm , HB:HC=9:16 tính AB,AC,BC 
d) Biết AH:AM=40:41 Tính tỉ số AB phần Ac 
3/Hình thang ABCD có AB//CD và hai đường chéo vuông góc . Biết BD=15cm và dường cao hình thang bằng 12cm .Tính diện tích hình thang ABCD 

4/Cho tam giác ABC cân tại A có đường cao AH=32cm đường cao BK=38,4 cm 
a) tính các cạnh của tam giác ABC 
b) đường trung trục của AC cắt AH tai O tính OH

0
Bài 1.Cho tam giác ABC có trọng tâm G. Đường thẳng d đi qua G cắt hai cạnh AB và AC. CMR khoảng cách từ A đến d bằng tổng các khoảng cách từ B và C đến d.Bài 2. Cho tam giác ABC cân tại A và đường cao AD. Từ D dựng DE vuông góc AB và DF vuông góc AC (E thuộc AB, F thuộc AC)a) Chứng minh AD là trung trực của đoạn EF.[B]b) [/B]Trên tia đối của tia DE lấy điểm G sao cho DG=DE. Chứng minh tam giác CEG vuông.Bài...
Đọc tiếp

Bài 1.Cho tam giác ABC có trọng tâm G. Đường thẳng d đi qua G cắt hai cạnh AB và AC. CMR khoảng cách từ A đến d bằng tổng các khoảng cách từ B và C đến d.
Bài 2. Cho tam giác ABC cân tại A và đường cao AD. Từ D dựng DE vuông góc AB và DF vuông góc AC (E thuộc AB, F thuộc AC)
a) Chứng minh AD là trung trực của đoạn EF.
[B]b) [/B]Trên tia đối của tia DE lấy điểm G sao cho DG=DE. Chứng minh tam giác CEG vuông.
Bài 3. Cho tam giác ABC, vẽ tam giác vuông cân ABD cân tại B,A và D ở hai nửa mặt phẳng đối nhau bờ là đường thẳng BC. Vẽ tam giác vuông cân CBG cân tại B,G và A ở cùng nửa mặt phẳng bờ là đường thẳng BC. Chứng minh rằng GA vuông góc vớ DC.
Bài 4.Cho tam giác ABC trên tia đối của tia BA, CA lần lượt lấy điểm P,Q sao cho BP=CQ. Gọi M,N lần lượt là trung điểm của các đoạn BC,PQ. Đường thẳng MN cắt đường thẩngB,AC theo thứ tự tại B' và C'. Chứng minh rằng tam giác B'AC cân.

1
22 tháng 2 2020

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
 => BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE. 
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
 =>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
 (Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của  ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE      => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực  Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/

(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
 => ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM          => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của  ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).