K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2020

A B C I D E F N M P Q 1 1

Không mất tính tổng quát , giả sử AB < AC ( bỏ qua trường hợp đơn giản AB = AC )

Dễ thấy P là điểm chính giữa \(\widebat{EF}\) nên D,N,P thẳng hàng

Cần chứng minh \(\widehat{IMC}=\widehat{PDC}\)

Ta có : \(\widehat{IMC}=\widehat{MIB}+\widehat{B_1}=\frac{1}{2}\widehat{BIC}+\widehat{B_1}=\frac{1}{2}\left(180^o-\widehat{B_1}-\widehat{C_1}\right)+\widehat{B_1}\)

\(=\frac{1}{2}\left(180^o-\frac{\widehat{ABC}}{2}-\frac{\widehat{ACB}}{2}\right)+\frac{\widehat{ABC}}{2}=90^o+\frac{\widehat{ABC}}{4}-\frac{\widehat{ACB}}{4}\)

\(\widehat{PDC}=\widehat{PDE}+\widehat{EDC}=\frac{1}{2}\widehat{EDF}+\widehat{EDC}\)\(=\frac{1}{2}\left(180^o-\widehat{FDB}-\widehat{EDC}\right)+\widehat{EDC}\)

\(=90^o-\frac{\widehat{FDB}}{2}+\frac{\widehat{EDC}}{2}=90^o-\frac{90^o-\widehat{B_1}}{2}+\frac{90^o-\widehat{C_1}}{2}\)

\(=90^o+\frac{\widehat{ABC}}{4}-\frac{\widehat{ACB}}{4}\)

\(\Rightarrow\widehat{IMC}=\widehat{PDC}\Rightarrow IM//ND\)

b) Theo câu a suy ra \(\widehat{MID}=\widehat{IDP}\)

Mà \(\Delta PID\)cân tại I ( do IP = ID ) nên \(\widehat{IPD}=\widehat{IDP}\)

Suy ra \(\widehat{MID}=\widehat{IPD}=\widehat{QPN}\)

\(\Rightarrow\Delta IDM\approx\Delta PQN\left(g.g\right)\)

c) từ câu b \(\Rightarrow\frac{IM}{PN}=\frac{ID}{PQ}=\frac{IP}{PQ}\)( 1 ) 

Theo hệ thức lượng, ta có : \(IQ.IA=IE^2=IP^2\)

Do đó : \(\frac{QP}{IP}=1-\frac{IQ}{IP}=1-\frac{IP}{IA}=\frac{PA}{IA}\)

Suy ra  \(\frac{IP}{QP}=\frac{IA}{PA}\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{IM}{PN}=\frac{IA}{PA}\)kết hợp với IM // PN suy ra A,M,N thẳng hàng

3 tháng 9 2021

help me pls

 

Một số bài toán hay về tâm nội tiếp:Bài 1: Cho tam giác ABC nội tiếp (O), hai điểm K,L di chuyển trên (O) (K thuộc cung AB không chứa C, L thuộc cung AC không chứa B) thỏa mãn KL song song với BC. Gọi U và V lần lượt là tâm nội tiếp các tam giác AKB,ALC. Chứng minh rằng tâm của (UAV) thuộc đường thẳng cố định.Bài 2: Cho tứ giác lồi ABCD có AD = BC. AC cắt BD tại I. Gọi S,T là tâm nội tiếp các tam...
Đọc tiếp

Một số bài toán hay về tâm nội tiếp:

Bài 1: Cho tam giác ABC nội tiếp (O), hai điểm K,L di chuyển trên (O) (K thuộc cung AB không chứa C, L thuộc cung AC không chứa B) thỏa mãn KL song song với BC. Gọi U và V lần lượt là tâm nội tiếp các tam giác AKB,ALC. Chứng minh rằng tâm của (UAV) thuộc đường thẳng cố định.

Bài 2: Cho tứ giác lồi ABCD có AD = BC. AC cắt BD tại I. Gọi S,T là tâm nội tiếp các tam giác AID,BIC. M,N là trung điểm các cạnh AB,CD. Chứng minh rằng MN chia đôi ST.

Bài 3: Cho tam giác ABC, đường tròn (I) nội tiếp tam giác ABC tiếp xúc BC,CA,AB tại D,E,F. Kẻ DH vuông góc EF tại H, G là trung điểm DH. Gọi K là trực tâm tam giác BIC. Chứng minh rằng GK chia đôi EF.

Bài 4: Cho tam giác ABC ngoại tiếp (I), (I) tiếp xúc với BC,CA,AB tại D,E,F. Gọi AI cắt DE,DF tại K,L; H là chân đường cao hạ từ A của tam giác ABC, M là trung điểm BC. Chứng minh rằng bốn điểm H,K,L,M cùng thuộc một đường tròn có tâm nằm trên (Euler) của tam giác ABC.

1
14 tháng 3 2020

chị gisp em bài này