các bn giỏi toán ơi giải giúp mk cí bài toán hình này nhé, mk đg cần, mơn các bn nhìu
Đề Cho tam giác ABC vuông tại A có 11B=7C
a) Tính góc B, góc C
b) Kẻ AH vuông góc với BC; tính góc BHI và góc CAH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tam giác AHB có : ^AHB = 90 và HE _|_ AB => AE.AB = AH^2
xét tam giác AHC có : ^AHC = 90 và HF _|_ AC => AF.AC = AH^2
=> AE.AB = AF.AC
b, tứ giác AEHF có : ^FAE = ^HEA = ^HFA = 90
=> AEHF là hình chữ nhật
=> EF = AH
xét tam giác ABC có : ^ABC = 90 và AH _|_ BC => AH^2 = HB.HC
=> EF^2 = HB.HC
c, xét tam giác ABC có : ^ABC = 90; AH _|_ BC => AB^2 = BH.HC
=> AB^3 = BH.BC.AB
=> AB^3/BC^2 = BH.AB/BC
xét tam giác HEB và tam giác CAB có : ^ABC chung và ^HEB = ^CAB = 90
=> tam giác HEB đồng dạng với tam giác CAB (g-g)
=> BE/BH = AB/BC
=> BE = AB.BH/BC = AB^3/BC^2
d, có AH^4 = (AH^2)^2 = (BH.HC)^2 = BH^2.HC^2
có BH^2 = BE.BA và HC^2 = CF.CA
=> AH^4 = BE.BA.CF.CA
mà có BA.CA = AH.BC
=> AH^4 = AH.BC.BE.CF
=> AH^3 = BC.BE.CF
a/ Xét tg vuông AEH và tg vuông ABC có
\(\widehat{EAH}=\widehat{ACB}\) => tg AEH đồng dạng với tg ABC \(\Rightarrow\frac{AE}{AC}=\frac{AH}{BC}\)
Tương tự c/ được tg AFH đồng dạng với tg ABC \(\Rightarrow\frac{AF}{AB}=\frac{AH}{BC}\)
\(\Rightarrow\frac{AE}{AC}=\frac{AF}{AB}\Rightarrow AE.AB=AF.AC\left(dpcm\right)\)
b/ Ta có
\(HE\perp AB;AF\perp AB\) => HE//AF (1)
\(HF\perp AC;AE\perp AC\) => HF//AE (2)
\(\widehat{A}=90^o\)
Từ (1) (2) và (3) => AEHF là HCN => EF=AH (trong HCN 2 đường chéo = nhau)
Xét tg vuông ABC có \(AH^2=BH.HC\) (Trong tg vuông bình phương đường cao từ đỉnh góc vuông xuống cạnh huyền bằng tích các hình chiếu của 2 cạnh bên trên cạnh huyền)
\(\Rightarrow EF^2=BH.HC\left(dpcm\right)\)
c/ Xét tg vuông ABH có
\(BH^2=BE.AB\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích hình chiếu của cạnh góc vuông đó trên cạnh huyền với cạnh huyền) \(\Rightarrow BE=\frac{BH^2}{AB}\)
Xét tg vuông ABC có \(AB^2=BH.BC\) (lý do như trên) \(\Rightarrow BH=\frac{AB^2}{BC}\Rightarrow BH^2=\frac{AB^4}{BC^2}\) Thay vào biểu thức tính BE có
\(BE=\frac{\frac{AB^4}{BC^2}}{AB}=\frac{AB^3}{BC^2}\left(dpcm\right)\)
Xét \(\Delta ABD\)và \(\Delta ACD\)có
\(\widehat{ABD}=\widehat{ACD}=90^o\left(BD\perp AB;CD\perp AC\right)\)
AB = AC ( \(\Delta ABC\)cân tại A )
AD: Cạnh chung
Do đó : \(\Delta ABD=\Delta ACD\)( cạnh huyền - cạnh góc vuông )
\(\Rightarrow\widehat{BAD}=\widehat{CAD}\) ( 2 góc tuơng ứng )
Gọi I là giao điểm của BC và AD
Xét \(\Delta ABI\)và \(\Delta ACI\) có:
AB = AC ( tam giác ABC cân ở A )
\(\widehat{BAI}=\widehat{CAI}\left(cmt\right)\)
AI : cạnh chung
Do đó : \(\Delta ABI=\Delta ACI\left(c.g.c\right)\)
\(\Rightarrow BI=CI\)( cặp cạnh tuơng ứng )
Mà \(I\in BC\)
Nên I là trung điểm của BC (1)
Ta có: \(\widehat{AIB}=\widehat{AIC}\)( \(\Delta ABI=\Delta ACI\) )
Mà \(\widehat{AIB}+\widehat{AIC}=180^o\)( 2 góc kề bù )
Nên : \(\widehat{AIB}=\widehat{AIC}=\frac{180^o}{2}=90^o\)
=> \(AI\perp BC\)hay \(AD\perp BC\) (2)
Từ (1) và (2) suy ra : AD là đuờng trung trực của BC ( đpcm )
Xét tam giác ADB và tam giác ADC có
AD chung
góc ABD= góc ACD(=90)
AB=AC(gt)
=>tam giác ADC= tam giác ADC
=>góc BAD=gócCAD
=>AD phan giac goc a
Mà trong một tam giác cân tia phân giac là đường trung trực
=>AH trung trực BC
Xét ΔABC có: \(\widehat{A}+\widehat{B}+\widehat{C}=180\) (định lý tổng 3 góc trong một tam giác)
=> \(\widehat{A}=180-\left(\widehat{B}+\widehat{C}\right)=180-\left(80+30\right)=180-110=70\)
Vì AD là tia phân giác cua \(\widehat{A}\) (gt)
=> \(\widehat{BAD}=\widehat{CAD}=\frac{1}{2}\widehat{A}=\frac{1}{2}\cdot70=35\)
Xét ΔABD có: \(\widehat{B}+\widehat{BAD}+\widehat{BDA}=180\) (đinhk lý tổng 3 góc trong một tam giác)
=> \(\widehat{BDA}=180-\left(\widehat{B}+\widehat{BAD}\right)=180-\left(80+35\right)=180-115=65\)
Hay \(\widehat{ADH}=65\)
Xét ΔAHD có: \(\widehat{ADH}+\widehat{AHD}+\widehat{HAD}=180\) (định lý tổng các góc trong 1 tam giác)
=>\(\widehat{HAD}=180-\left(\widehat{ADH}+\widehat{AHD}\right)=180-\left(65+90\right)=180-155=25\)