K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2021

A B C H E F

a, xét tam giác AHB có : ^AHB = 90 và HE _|_ AB => AE.AB = AH^2

    xét tam giác AHC có : ^AHC = 90 và HF _|_ AC => AF.AC = AH^2

=> AE.AB = AF.AC

b, tứ giác AEHF có : ^FAE = ^HEA = ^HFA = 90

=> AEHF là hình chữ nhật

=> EF = AH

xét tam giác ABC có : ^ABC = 90 và AH _|_ BC => AH^2 = HB.HC

=> EF^2 = HB.HC

c, xét tam giác ABC có : ^ABC = 90; AH _|_ BC => AB^2 = BH.HC 

=> AB^3 = BH.BC.AB

=> AB^3/BC^2 = BH.AB/BC

xét tam giác HEB và tam giác CAB có : ^ABC chung và ^HEB = ^CAB = 90

=> tam giác HEB đồng dạng với tam giác CAB (g-g)

=> BE/BH = AB/BC

=> BE = AB.BH/BC = AB^3/BC^2

d, có AH^4 = (AH^2)^2 = (BH.HC)^2 = BH^2.HC^2 

có BH^2 = BE.BA và HC^2 = CF.CA

=> AH^4 = BE.BA.CF.CA

mà có BA.CA = AH.BC

=> AH^4 = AH.BC.BE.CF

=> AH^3 = BC.BE.CF

21 tháng 8 2021

a/ Xét tg vuông AEH và tg vuông ABC có

\(\widehat{EAH}=\widehat{ACB}\) => tg AEH đồng dạng với tg ABC \(\Rightarrow\frac{AE}{AC}=\frac{AH}{BC}\)

Tương tự c/ được tg AFH đồng dạng với tg ABC \(\Rightarrow\frac{AF}{AB}=\frac{AH}{BC}\)

\(\Rightarrow\frac{AE}{AC}=\frac{AF}{AB}\Rightarrow AE.AB=AF.AC\left(dpcm\right)\)

b/ Ta có

\(HE\perp AB;AF\perp AB\) => HE//AF (1)

\(HF\perp AC;AE\perp AC\) => HF//AE (2)

\(\widehat{A}=90^o\)

Từ (1) (2)  và (3) => AEHF là HCN => EF=AH (trong HCN 2 đường chéo = nhau)

Xét tg vuông ABC có \(AH^2=BH.HC\) (Trong tg vuông bình phương đường cao từ đỉnh góc vuông xuống cạnh huyền bằng tích các hình chiếu của 2 cạnh bên trên cạnh huyền)

\(\Rightarrow EF^2=BH.HC\left(dpcm\right)\)

c/ Xét tg vuông ABH có

\(BH^2=BE.AB\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích hình chiếu của cạnh góc vuông đó trên cạnh huyền với cạnh huyền) \(\Rightarrow BE=\frac{BH^2}{AB}\)

Xét tg vuông ABC có \(AB^2=BH.BC\) (lý do như trên) \(\Rightarrow BH=\frac{AB^2}{BC}\Rightarrow BH^2=\frac{AB^4}{BC^2}\) Thay vào biểu thức tính BE có

\(BE=\frac{\frac{AB^4}{BC^2}}{AB}=\frac{AB^3}{BC^2}\left(dpcm\right)\)

24 tháng 1 2018

Xét \(\Delta ABD\)và \(\Delta ACD\)

\(\widehat{ABD}=\widehat{ACD}=90^o\left(BD\perp AB;CD\perp AC\right)\)

AB = AC ( \(\Delta ABC\)cân tại A )

AD: Cạnh chung

Do đó : \(\Delta ABD=\Delta ACD\)( cạnh huyền - cạnh góc vuông )

\(\Rightarrow\widehat{BAD}=\widehat{CAD}\) ( 2 góc tuơng ứng )

Gọi I là giao điểm của BC và AD

Xét \(\Delta ABI\)và \(\Delta ACI\) có:

AB = AC ( tam giác ABC cân ở A )

\(\widehat{BAI}=\widehat{CAI}\left(cmt\right)\)

AI : cạnh chung

Do đó : \(\Delta ABI=\Delta ACI\left(c.g.c\right)\)

\(\Rightarrow BI=CI\)( cặp cạnh tuơng ứng )

Mà \(I\in BC\)

Nên I là trung điểm của BC (1)

Ta có: \(\widehat{AIB}=\widehat{AIC}\)( \(\Delta ABI=\Delta ACI\) )

Mà \(\widehat{AIB}+\widehat{AIC}=180^o\)( 2 góc kề bù )

Nên : \(\widehat{AIB}=\widehat{AIC}=\frac{180^o}{2}=90^o\)

=> \(AI\perp BC\)hay \(AD\perp BC\) (2)

Từ (1) và (2) suy ra : AD là đuờng trung trực của BC ( đpcm )

24 tháng 1 2018

Xét tam giác ADB và tam giác ADC có

AD chung

góc ABD= góc ACD(=90)

AB=AC(gt)

=>tam giác ADC= tam giác ADC

=>góc BAD=gócCAD

=>AD phan giac goc a

Mà trong một tam giác cân tia phân giac là đường trung trực

=>AH trung trực BC

7 tháng 8 2016

Xét ΔABC có: \(\widehat{A}+\widehat{B}+\widehat{C}=180\) (định lý tổng 3 góc trong một tam giác)

=> \(\widehat{A}=180-\left(\widehat{B}+\widehat{C}\right)=180-\left(80+30\right)=180-110=70\) 

Vì AD là tia phân giác cua \(\widehat{A}\) (gt)

=> \(\widehat{BAD}=\widehat{CAD}=\frac{1}{2}\widehat{A}=\frac{1}{2}\cdot70=35\)

Xét ΔABD có: \(\widehat{B}+\widehat{BAD}+\widehat{BDA}=180\) (đinhk lý tổng 3 góc trong một tam giác)

=> \(\widehat{BDA}=180-\left(\widehat{B}+\widehat{BAD}\right)=180-\left(80+35\right)=180-115=65\)

Hay \(\widehat{ADH}=65\)

Xét ΔAHD có: \(\widehat{ADH}+\widehat{AHD}+\widehat{HAD}=180\) (định lý tổng các góc trong 1 tam giác)

=>\(\widehat{HAD}=180-\left(\widehat{ADH}+\widehat{AHD}\right)=180-\left(65+90\right)=180-155=25\)

 

 

6 tháng 8 2016

800 độ hay 80vay ban

 

Xin lỗi tôi chưa học đến