Xét sự tính chẵn lẻ của hàm số y= x^2020-2x^2-3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đồ thị là hình 26. Hàm số không là hàm số chẵn, không là hàm số lẻ
Đáp án D
Ta có tập xác định D = R.
Hàm số y = f(x) = 0 có:
f(-x) = 0 và –f(x) = 0
=> f(x) = f(-x) = -f(x) vừa thỏa mãn tính chất của hàm số chẵn, vừa thỏa mãn tính chất của hàm số lẻ, nên đây là hàm số vừa chẵn vừa lẻ.
\(f\left(-x\right)=\sqrt[3]{-x+2}-\sqrt[3]{-x-2}\)
\(=-\left(\sqrt[3]{x-2}-\sqrt[3]{x+2}\right)\)
=f(x)
Vậy: f(x) là hàm số chẵn
a, \(y=f\left(x\right)=2x^2+1\)
\(f\left(-x\right)=2x^2+1=f\left(x\right)\Rightarrow\) Là hàm chẵn
b, \(y=f\left(x\right)=5x^3-2x\)
\(f\left(-x\right)=-5x^3+2x=-f\left(x\right)\Rightarrow\) Là hàm lẻ
c, \(y=f\left(x\right)=\sqrt{x-1}\)
ĐK: \(x\ge1\)
\(-f\left(x\right)=-\sqrt{x-1}\ne f\left(x\right)\Rightarrow\) Không phải là hàm số chẵn, lẻ
d, \(y=f\left(x\right)=5x^2-\dfrac{1}{x}\)
ĐK: \(x\ne0\)
\(f\left(-x\right)=5x^2+\dfrac{1}{x}\ne f\left(x\right)\)
\(-f\left(x\right)=-5x^2+\dfrac{1}{x}\ne f\left(-x\right)\)
\(\Rightarrow\) Không phải là hàm số chẵn, lẻ
b: \(f\left(-x\right)=\dfrac{\left|-x+1\right|+\left|-x-1\right|}{\left|-x+1\right|-\left|-x-1\right|}\)
\(=\dfrac{\left|x-1\right|+\left|x+1\right|}{\left|x-1\right|-\left|x+1\right|}\)
=-f(x)
Vậy: f(x) là hàm số lẻ
\(f\left(-x\right)=\left(-x\right)^{2020}-2\cdot\left(-x\right)^2-3\)
\(=x^{2020}-2x^2-3\)
=f(x)
=> f(x) là hàm số chẵn