K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2022

a) Xét \(\Delta ADB\) và \(\Delta AEC\) có:

\(AB=AC\) (do \(\Delta ABC\) cân tại \(A\))

\(\widehat{ABD}=\widehat{ACE}\)

\(BD=CE\) (giả thiết)

\(\Rightarrow\Delta ADB=\Delta AEC\left(c.g.c\right)\)

\(\Rightarrow AD=AE\) (\(2\) cạnh tương ứng)

\(\Rightarrow\Delta ADE\) cân tại \(A\)

b) Vì \(\Delta ADE\) cân tại \(A\)

\(\Rightarrow\widehat{ADB}=\widehat{ACE}\) (\(2\) góc tương ứng)

Ta có: \(\left\{{}\begin{matrix}\widehat{ADB}+\widehat{HBD}=90^o\\\widehat{ACE}+\widehat{KCE}=90^o\end{matrix}\right.\) (\(2\) góc phụ nhau)

Từ hai điều trên \(\Rightarrow\widehat{HBD}=\widehat{KCE}\)

Mà \(\left\{{}\begin{matrix}\widehat{HBD}=\widehat{CBI}\\\widehat{KCE}=\widehat{BCI}\end{matrix}\right.\) (\(2\) góc đối đỉnh)

Từ đó \(\Rightarrow\widehat{CBI}=\widehat{BCI}\)

\(\Rightarrow\Delta BIC\) cân tại \(I\)

c) Xét \(\Delta ABI\) và \(\Delta ACI\) có:

\(AB=AC\) (giả thiết)

\(BI=CI\) (do \(\Delta BIC\) cân tại \(I\))

\(AI\) là cạnh chung

\(\Rightarrow\Delta ABI=\Delta ACI\left(c.c.c\right)\)

\(\Rightarrow\widehat{AIB}=\widehat{AIC}\) (\(2\) góc tương ứng)

\(\Rightarrow AI\) là tia phân giác \(\widehat{BIC}\)

a; Xét ΔABD và ΔACE có 

AB=AC
\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó: ΔABD=ΔACE

Suy ra: AD=AE

hay ΔADE cân tại A

b: Xét ΔHBD vuông tại H và ΔKCE vuông tại K có

BD=CE
\(\widehat{D}=\widehat{E}\)

Do đó: ΔHBD=ΔKCE
Suy ra: \(\widehat{HBD}=\widehat{KCE}\)

hay \(\widehat{IBC}=\widehat{ICB}\)

hay ΔIBC cân tại I

7 tháng 7 2023

mn ơi giúp mình với mai nộp òi

  Cho tam giác ABC cân tại A.Trên tia đối của tia BC lấy điểm D,trên tia đối của tia CB lấy điểm E sao cho BD=CE.Kẻ BH vuông góc với AD,CK vuông góc với AE{H thuộc AD,K thuộc AE}.Hai đường thẳng HB và KC cắt nhau tại O.Chứng minh rằng                                      a.tam giác ABD=tam giác ACE                                                                                                       b.tam giác ADE cân                                ...
Đọc tiếp

 

 

Cho tam giác ABC cân tại A.Trên tia đối của tia BC lấy điểm D,trên tia đối của tia CB lấy điểm E sao cho BD=CE.Kẻ BH vuông góc với AD,CK vuông góc với AE{H thuộc AD,K thuộc AE}.Hai đường thẳng HB và KC cắt nhau tại O.Chứng minh rằng                                      a.tam giác ABD=tam giác ACE                                                                                                       b.tam giác ADE cân                                                                                                                c.tam giác DHB=tam giác EKC                                                                                                  d.tam giác BOC cân                                                                                                                    e.OA là tia phân giác của góc BOC

 

 

0

a: Xét ΔABD và ΔACE có

AB=AC

góc ABD=góc ACE

BD=CE

=>ΔABD=ΔACE

=>AD=AE

b: 

Xét ΔBHD vuông tại H và ΔCKE vuông tại K có

BD=CE

góc D=góc E

=>ΔBHD=ΔCKE

=>góc HBD=góc KCE

=>góc IBC=góc ICB

=>ΔIBC cân tại I

c: Xét ΔABI và ΔACI có

AI chung

AB=AC

BI=CI

=>ΔABI=ΔACI

=>góc BIA=góc CIA

=>IA là phân giác của góc BIC

a) Ta có: \(\widehat{ABD}+\widehat{ABC}=180^0\)(hai góc kề bù)

\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)

nên \(\widehat{ABD}=\widehat{ACE}\)

Xét ΔABD và ΔACE có

AB=AC(ΔABC cân tại A)

\(\widehat{ABD}=\widehat{ACE}\)(cmt)

BD=CE(gt)

Do đó: ΔABD=ΔACE(c-g-c)

b) Ta có: ΔABD=ΔACE(cmt)

nên AD=AE(hai cạnh tương ứng)

Xét ΔADE có AD=AE(cmt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

c) Xét ΔDHB vuông tại H và ΔEKC vuông tại K có

DB=CE(gt)

\(\widehat{HDB}=\widehat{KEC}\)(hai góc ở đáy của ΔADE cân tại A)

Do đó: ΔDHB=ΔEKC(cạnh huyền-góc nhọn)

d) Ta có: ΔDHB=ΔEKC(cmt)

nên \(\widehat{HBD}=\widehat{KCE}\)(hai góc tương ứng)

mà \(\widehat{HBD}=\widehat{OBC}\)(hai góc đối đỉnh)

và \(\widehat{KCE}=\widehat{OCB}\)(hai góc đối đỉnh)

nên \(\widehat{OBC}=\widehat{OCB}\)

Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)(cmt)

nên ΔOBC cân tại O(Định lí đảo của tam giác cân)

e) Xét ΔABO và ΔACO có

AB=AC(ΔABC cân tại A)

AO chung

BO=CO(ΔOBC cân tại O)

Do đó: ΔABO=ΔACO(c-c-c)

nên \(\widehat{BOA}=\widehat{COA}\)(hai góc tương ứng)

mà tia OA nằm giữa hai tia OB,OC

nên OA là tia phân giác của \(\widehat{BOC}\)(đpcm)

3 tháng 2 2021

cảm ơn bạn rất nhiếubatngo

 

a: Xét ΔABD và ΔACE có

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó: ΔABD=ΔACE

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔAHB=ΔAKC

Suy ra: HA=KA

a: Xét ΔABD và ΔACE có

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó: ΔABD=ΔACE

SUy ra: AD=AE
hay ΔADE cân tại A

b: Xét ΔHBD vuông tại H và ΔKCE vuông tại K có

BD=CE

\(\widehat{HDB}=\widehat{KEC}\)

Do đó: ΔHBD=ΔKCE

Suy rA: \(\widehat{HBD}=\widehat{KCE}\)

mà \(\widehat{OBC}=\widehat{HBD}\)

và \(\widehat{OCB}=\widehat{KCE}\)

nên \(\widehat{OBC}=\widehat{OCB}\)

hay ΔOBC cân tại O

c: Xét ΔABO và ΔACO có

AB=AC

BO=CO

AO chung

DO đó: ΔABO=ΔACO

Suy ra: \(\widehat{BOA}=\widehat{COA}\)

hay OA là tia phân giác của góc BOC