K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔMNI và ΔMPI có

MN=MP(do ΔMNP cân tại M)

NI=PI(do I là trung điểm của NP)

MI là cạnh chung

Do đó: ΔMNI=ΔMPI(c-c-c)

b)Ta có: MI=IH(gt)

mà I∈MH

nên I là trung điểm của MH

Xét tứ giác MNHP có

I là trung điểm của đường chéo MH(cmt)

I là trung điểm của đường chéo NP(gt)

Do đó: MNHP là hình bình hành(dấu hiệu nhận biết hình bình hành)

⇒MN//HP(hai cạnh đối trong hình bình hành MNHP)

c) Xét tứ giác MKPN có

MK//NP(Mx//NP,K∈Mx)

MK=NP(gt)

Do đó: MKPN là hình bình hành(dấu hiệu nhận biết hình bình hành)

⇒MN//PK(hai cạnh đối trong hình bình hành MKPN)

Ta có: HP//NM(cmt)

PK//MN(cmt)

mà HP và PK có điểm chung là P

nên H,P,K thẳng hàng(đpcm)

a: Xét ΔMNI và ΔMPI có 

MN=MP

NI=PI

MI chung

Do đó: ΔMNI=ΔMPI

Ta có: ΔMNP cân tại M

mà MI là đường trung tuyến

nên MI là đường cao

b: Xét tứ giác MNQP có

I là trung điểm của MQ

I là trung điểm của NP

Do đó: MNQP là hình bình hành

Suy ra: MN//PQ

c: Xét tứ giác MEQF có 

ME//QF

ME=QF

Do đó: MEQF là hình bình hành

Suy ra: MQ và EF cắt nhau tại trung điểm của mỗi đường

mà I là trung điểm của MQ

nên I là trung điểm của FE

hay E,I,F thẳng hàng

13 tháng 2 2020

Câu a) hơi lỗi

13 tháng 2 2020

Ui sorry nha, hơi bị lỗi type xíu.

Câu a đúng ra phải là :Chứng minh tam giác MNI = tam giác MPI

a: Xét ΔMIP và ΔKIN có 

IM=IK

\(\widehat{MIP}=\widehat{KIN}\)

IP=IN

Do đó: ΔMIP=ΔKIN

c: Xét ΔMEK có 

H là trung điểm của ME

I là trung điểm của MK

Do đó: HI là đường trung bình

=>HI//EK và HI=EK/2

Xét ΔMPE có

PH là đường cao

PH là đường trung tuyến

Do đó: ΔMPE cân tại P

Suy ra: PM=PE(1)

Xét tứ giác MNKP có

I là trung điểm của MK

I là trung điểm của NP

Do đó: MNKP là hình bình hành

Suy ra: NK=MP(2)

Từ (1) và (2) suy ra NK=PE

26 tháng 4 2020

Violympic toán 7

a) Xét △MNP có:

MN = MP

⇒ △MNP cân tại M

\(\widehat{MNP}=\widehat{MPN}\)

Xét △MNI và △MPI có:

MN = MP (g.t)

\(\widehat{MNP}=\widehat{MPN}\) (c.m trên)

NI = PI (g.t)

⇒ △MNI = △MPI (đpcm)

b) Xét △MNI và △HPI có:

NI = PI (g.t)

\(\widehat{MIN}=\widehat{HIP}\) (đối đỉnh)

IM = IH (g.t)

⇒ △MNI = △HPI (c.g.c)

\(\widehat{MNI}=\widehat{HPI}\) (Hai góc tương ứng)

Mà hai góc này nằm ở vị trí so le trong.

⇒ MN // HP (đpcm)

c) Xét △MNP và △PKM có:

MP : cạnh chung

\(\widehat{MPN}=\widehat{PMK}\) (Mx // NP)

MK = NP (g.t)

⇒ △MNP = △PKM (c.g.c)

\(\widehat{NMP}=\widehat{KPM}\) (Hai góc tương ứng)

Mà hai góc này nằm ở vị trí so le trong.

⇒ MN // PK

Mà MN // HP (c.m b)

⇒ Ba điểm K, P, H thẳng hàng (đpcm)

22 tháng 2 2020

I M N Q P

Xét \(\Delta MIN\)và \(\Delta QIP\)có:

IM = IQ (gt)

\(\widehat{MIN}=\widehat{QIP}\left(gt\right)\)

NI = PI (gt)

\(\Rightarrow\Delta MIN=\Delta QIP\left(c.g.c\right)\)

Bạn có thể vẽ hình câu b mình xem được không?

22 tháng 2 2020

đây là hình cả bài, giải giúp mình

M P N H Q K I - - - - - -

12 tháng 5 2017

a) tam giác MNP có MN=MP(GT) suy ra tam giác MNP cân tại M (ĐỊNH nghĩa tam giác cân)

b) xét tam giác MNI và MPI có 

    MI chung 

    MN=MP(GT)

    IN=IP(MI là trung tuyến nên I là trung điểm NP)

SUY ra tam giác MNI=MPI(C-C-C)

c) Vì tam giác MNP cân tại M(cmt)màMI là đường trung tuyến nên MI đồng thời cũng là đường cao đường trung trực hay MI là đường trung trực của NP (tính chất tam giác cân)

d)Vì MI là đường cao tam giác MNP(cmt) suy ra MI vuông góc với NP suy ra tam giác MNI vuông tại I

   Vì MI là đường trung tuyến nên I là trung điểm NP suy ra NI=1/2NP

    Mà NP=12cm(gt) suy ra NI=12x1/2=6cm

   xét tam giác vuông MNI có

    NM2=NI2+MI2(ĐỊNH LÍ Py-ta-go)

   Suy ra MI2=NM2-NI2

 mà NM=10CM(gt) NI=6CM(cmt)

suy ra MI2=102-62=100-36=64=căn bậc 2 của 64=8

mà MI>0 Suy ra MI=8CM (đpcm)

ế) mik gửi cho bn bằng này nhé 

12 tháng 5 2017

a) Vì MN=MP => tam giác MNP là tam giác cân tại M.

b)Xét tam giác MIN và tam giác MIP có:

           MN=MP (vì tam giác MNP cân)

           \(\widehat{MNP}=\widehat{MPI}\)(tam giác MNP cân)

            NI=PI(vì MI là trung tuyến)

=> tam giác MIN=tam giác MIP(c.g.c)

c) Ta có: MN=MP

              IN=IP

=> M,I thuộc trung trực của NP

Hay MI là đường trung trực của NP

d) IN=IP=NP/2=12/2=6(cm)

Xét tam giác MIN có góc MIN =90*

 =>  MN^2=MI^2 + NI^2

 =>  MI^2=MN^2-NI^2

 =>  MN^2 = 10^2 - 6^2

 =>  MN = 8

e) Tam giác HEI có goc IHE=90*

 => góc HEI + góc HIE= 90*

Mà góc HIE = góc MEF/2

 => góc MEF/2 + góc HEI = 90*   (1)

Mà góc MEF + góc HEI + góc IEF = 180*

 => góc MEF/2 + góc IEF = 90*     (2)

  Từ (1) và (2)   =>  góc HEI = góc IEF

Hay EI là tia phân giác của góc HEF