Cho phương trình (ẩn x): x3 + ax2 – 4x – 4 = 0
a) Xác định m để phương trình có một nghiệm x = 1.
b) Với giá trị m vừa tìm được, tìm các nghiệm còn lại của phương trình.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Thay x=-2 vào pt,ta được:
-8+4a+8-4=0
=>4a-4=0
hay a=1
b: Pt sẽ là \(x^3+x^2-4x-4=0\)
\(\Leftrightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)
=>(x+1)(x-2)(x+2)=0
hay \(x\in\left\{-1;2;-2\right\}\)
`B4:`
`a)` Thay `x=3` vào ptr:
`3^3-3^2-9.3-9m=0<=>m=-1`
`b)` Thay `m=-1` vào ptr có: `x^3-x^2-9x+9=0`
`<=>x^2(x-1)-9(x-1)=0`
`<=>(x-1)(x-3)(x+3)=0<=>[(x=1),(x=+-3):}`
`B5:`
`a)` Thay `x=-2` vào có: `(-2)^3-(m^2-m+7).(-2)-3(m^2-m-2)=0`
`<=>-8+2m^2-2m+14-3m^2+3m+6=0`
`<=>-m^2+m+12=0<=>(m-4)(m+3)=0<=>[(m=4),(m=-3):}`
`b)`
`@` Với `m=4` có: `x^3-(4^2-4+7)x-3(4^2-4-2)=0`
`<=>x^3-19x-30=0`
`<=>x^3-5x^2+5x^2-25x+6x-30=0`
`<=>(x-5)(x^2+5x+6)=0`
`<=>(x-5)(x+2)(x+3)=0<=>[(x=5),(x=-2),(x=-3):}`
`@` Với `m=-3` có: `x^3-[(-3)^2-(-3)+7]x-3[(-3)^2-(-3)-2]=0`
`<=>x^3-19x-30=0<=>[(x=5),(x=-2),(x=-3):}`
Cho phương trình (ẩn x): x3 + ax2 – 4x – 4 = 0
a) Xác định m để phương trình có một nghiệm x = 1.
b) Với giá trị m vừa tìm được, tìm các nghiệm còn lại của phương trình.
Trên phương trình có m đâu mà tìm m vậy ? Mình sửa :
\(x^3+mx^2-4x-4=0\)(1)
a) Thay \(x=1\), phương trình (1) trở thành :
\(1^3+m.1^2-4.1-4=0\)
\(\Leftrightarrow1+m-4-4=0\)
\(\Leftrightarrow m-7=0\)
\(\Leftrightarrow m=7\)
Vậy \(x=1\Leftrightarrow m=7\)
b) Thay \(m=7\), phương trình (1) trở thành :
\(x^3+7x^2-4x-4=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+8x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2+8x+4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\\left(x+4\right)^2-12=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\\left(x+4-2\sqrt{3}\right)\left(x+4+2\sqrt{3}\right)=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x\in\left\{2\sqrt{3}-4;-2\sqrt{3}-4\right\}\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{1;2\sqrt{3}-4;-2\sqrt{3}-4\right\}\)