làm hộ mình
Bài 2:Tìm x biết :
x2-4x=-4
Bài 3:Chứng minh với mọi số nguyên n thì:
a)(n+2)2- (n-2)2chia hết cho 8
b)(n+7)2-(n-5)2chia hết cho 24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\left(4n-7-5\right)\left(4n-7+5\right)\)
\(=\left(4n-12\right)\left(4n-2\right)\)
\(=8\left(n-3\right)\left(2n-1\right)⋮8\)
\(A=\left(7n-2\right)^2-\left(2n-7\right)^2\)
xét n = 1 ta có \(A=5^2-\left(-5\right)^2=0⋮7\)
xét n = 2 ta có \(A=12^2-\left(-3\right)^2=135⋮̸7\)
=> đề bài sai
\(c,=\left(31,8-21,8\right)^2=10^2=100\\ 12,\\ a,\left(n+2\right)^2-\left(n-2\right)^2\\ =\left(n+2-n+2\right)\left(n+2+n-2\right)\\ =4\cdot2n=8n⋮8\\ b,\left(n+7\right)^2-\left(n-5\right)^2\\ =\left(n+7-n+5\right)\left(n+7+n-5\right)\\ =12\left(2n+2\right)=24\left(n+1\right)⋮24\)
Bài 1: \(\left(5n+2\right)^2-4=\left(25n^2+2.2.5n+2^2\right)-4=25n^2+20n+4-4\)
\(=25n^2+20n=5n\left(5n+4\right)\)
Có \(5n\left(5n+4\right)⋮5\) (có cơ số 5n)
=> \(\left(5n+2\right)^2-4⋮5\)
Bài 2: \(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)
Đây là tích ba số tự nhiên liên tiếp nên chia hết cho 3.
Vậy: \(n^3-n⋮3\)
Bài 3: \(x^2\left(x-3\right)+12-4x=0\)
\(\Leftrightarrow x^2\left(x-3\right)+4\left(3-x\right)=0\)
\(\Leftrightarrow x^2\left(x-3\right)-4\left(x-3\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x-3\right)=0\)
\(\Leftrightarrow x^2=4,x=3\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=-2\\x=3\end{array}\right.\)
Câu 1:
Ta có:(5n+2)2-4=25n2+20n+4-4
=5.5n2+5.4n
=5.(5n2+4n)
Vì 5.(5n2+4n) chia hêt cho 5
Suy ra:(5n+2)2-4
Câu 2:
Ta có:
n3-n=n.n2-n
=n.(n2-1)
=(n-1).n.(n+1)
Vì (n-1);n và (n+1) là ba số tự nhiên liên tiếp
Mà (n-1).n.(n+1) chia hết cho 3(1)
Và (n-1).(n+1) chia hêt cho 2(2)
Từ (1) và (2) suy ra:(n-1).n.(n+1) chia hết cho 6
(n+2) chia hết cho (n-3)
=>n-3+5 chia hết cho n-3
=> 5 chia hết cho n-3
=>n-3 E U(5)={1;-1;5;-5}
=>n-3=1
n=4
n-3=-1
n=2
n-3=5
n=8
n-3=-5
n=-2
vay x E {4;2;8;-2}
n+2 chia hêt cho n-3
n-3+5 chia hết cho n-3
Vì n-3 chia hết cho n-3
=> 5 chia hết cho n-3
=> n-3 thuộc Ư(5)
=> n-3 thuộc {1; -1; 5; -5}
=> n thuộc {4; 2; 8; -2}
a, Để \(n\in Z\)
Ta có : \(3n+2⋮2n-1\)
\(6n-3n+2⋮2n-1\)
\(3\left(2n-1\right)+2⋮2n-1\)
Vì 2 \(⋮\)2n-1 hay 2n-1\(\in\)Ư'(2)={1;-1;-2;2}
Ta có bảng
2n-1 | -1 | 1 | 2 | -2 |
2n | 0 | 2 | 3 | -1 |
n | 0 | 1 | 3/2 | -1/2 |
Vậy n = {0;1}
\(b,\frac{n+3}{n-7}=\frac{n-7+10}{n-7}=1+\frac{10}{n-7}\)
=> 10 chia hết cho n - 7
=> n - 7 thuộc Ư\((10)\)
=> n - 7 \(\in\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Lập bảng :
n - 7 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
n | 8 | 6 | 9 | 5 | 12 | 2 | 17 | -3 |
Bài 2.
\(n^4-2n^3-n^2+2n=n\left(n^3-2n^2-n+2\right)=n\left[n^2\left(n-2\right)-\left(n-2\right)\right]\)
\(=n\left(n-2\right)\left(n^2-1\right)=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\)
là tích của \(4\)số nguyên liên tiếp nên trong đó có ít nhất \(1\)thừa số chia hết cho \(4\), \(1\)thừa số chia hết cho \(3\), \(1\)thừa số chia hết cho \(2\)nhưng không chia hết cho \(4\)
do đó \(A\)chia hết cho \(2.3.4=24\).
Ta có đpcm.
Bài 1:
\(2-x=2\left(x-2\right)^3\)
\(\Leftrightarrow\left(x-2\right)\left[2\left(x-2\right)^2-1\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\2\left(x-2\right)^2=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=\pm\sqrt{\frac{1}{2}}+2\end{cases}}\)
Bài 3:
a: Ta có: \(\left(n+2\right)^2-\left(n-2\right)^2\)
\(=\left(n+2+n-2\right)\left(n+2-n+2\right)\)
\(=4\cdot2n=8n⋮8\)
b: Ta có: \(\left(n+7\right)^2-\left(n-5\right)^2\)
\(=\left(n+7-n+5\right)\left(n+7+n-5\right)\)
\(=12\cdot\left(2n+2\right)\)
\(=24\left(n+1\right)⋮24\)
adu
aduâyđuaudauaudâuđuua