tìm số dư trong phép chia 2^0+2^1+2^2+....+2^2014 cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= 1 + 2 + (22 + 23 + 24) + ........ + (22012 + 22013 + 22014)
= 3 + 7.22 + ..... + 22012.7
= 7(22 + ... + 22012) + 3
Vậy chia 7 dư 3
Ta thấy 20 + 21 + 22 chia hết cho 7
23+24+25 chia hết cho 7
Cứ lần lượt thế, bạn sẽ thấy cứ 3 số liên tiếp sẽ chia hết cho 7
Vậy ta có: 2014 : 3 = 671 (dư 1)
=> Số dư của biểu thức 20 + 21 + 22 + ....+ 22014 khi chia cho 7 là 1
\(2^0+2^1+2^2+2^3+...+2^{2014}.\)
\(=1+\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+.....+\left(2^{2012}+2^{2013}+2^{2014}\right)\)
\(=1+2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+....+2^{2012}\left(1+2+2^2\right)\)
\(=1+2.7+2^4.7+.....+2^{2012}.7\)
\(=1+7\left(2+2^4+....+2^{2012}\right)\)
\(7\left(2+2^4+...+2^{2012}\right)⋮7\)\(\Rightarrow\)\(2^0+2^1+2^2+2^3+...+2^{2014}\)\(chia7\)\(dư1\)
Ta có:
\(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}\)
\(\Rightarrow3A=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}\)
\(\Rightarrow2A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow6A=3+1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
\(\Rightarrow4A=3-\frac{101}{3^{99}}+\frac{100}{3^{100}}=3-\frac{203}{3^{100}}\)
\(\Rightarrow A=\frac{3-\frac{203}{3^{100}}}{4}=\frac{3}{4}-\frac{203}{3^{100}.4}< \frac{3}{4}\Rightarrowđpcm\)
Vậy \(A< \frac{3}{4}\)
=(2^0+2^1+2^2)+.......+(2^2012+2^2013+2^2014) =2^0.(1+2+4)+...........+2^2012.(1+2+4) =(2^0+.....+2^2012).7 vay so du cua phep chia la 0