Cho hình bình hành ABCD có I, J lần lượt là trung điểm của AB, CD
a) Cmr: tứ giác AJCI là hình bình hành
b) Biết diện tích hbh ABCD bằng 48\(cm^2\). Tính diện tích AJCI
c) Gọi E, F lần lượt là giao điểm AJ,CI với BD. Cmr: BD = 3DE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác DEBF có
BE//DF
BE=DF
Do đó: DEBF là hình bình hành
a,Hình bình hành ABCD có AB=CD
⇒12AB=AM=12CD=CN⇒12AB=AM=12CD=CN
Mặt khác, M,N lần lượt là trung điểm của AB và CD
Do đó, AM//CN
Tứ giác AMCN có cặp cạnh đối vừa song song vừa bằng nhau nên là hình bình hành (đpcm)
b, Tứ giác AMCN là hình bình hành
⇒⇒M1ˆ=N1ˆM1^=N1^ (Hai góc đối của hình bình hành AMCN)
⇒⇒M2ˆ=N2ˆM2^=N2^ (Do M1ˆM1^ và M2ˆM2^ là hai góc kề bù; N1ˆN1^ và N2ˆN2^ là hai góc kề bù)
Mặt khác, ABCD là hình bình hành nên AB//CD ⇒⇒B1ˆ=D1ˆB1^=D1^
ΔEDNΔEDN và ΔKBMΔKBM có:
M2ˆ=N2ˆM2^=N2^
DN=BMDN=BM
B1ˆ=D1ˆB1^=D1^
⇒ΔEDN=ΔKBM(g.c.g)⇒ΔEDN=ΔKBM(g.c.g)
⇒ED=KB⇒ED=KB (đpcm)
c, Gọi O là giao điểm của AC và BD.
ABCD là hình bình hành
⇒OA=OC⇒OA=OC
ΔCABΔCAB có:
MA=MBMA=MB
OA=OCOA=OC
MC cắt OB tại K
⇒⇒ K là trọng tâm của ΔCABΔCAB
Mặt khác, I là trung điểm của BC
⇒⇒ IA,OB,MC đồng quy tại K
Hay AK đi qua trung điểm I của BC (đpcm)
a: Xét tứ giác DEBF có
BE//DF
BE=DF
Do đó: DEBF là hình bình hành
b: Xét ΔANB có
E là trung điểm của AB
EM//NB
Do đó: M là trung điểm của AN
=>AM=MN(1)
Xét ΔMCD có
F là trung điểm của CD
FN//DM
Do đó: N là trung điểm của CM
Suy ra: NC=NM(2)
Từ (1) và (2) suy ra AM=MN=NC
Bạn tham khảo ở đây nhé!
http://diendan.hocmai.vn/showthread.php?t=234169