Cho tam giác ABC cân tại A.tia phân giác của góc B cắt AC tại M.tia phân giác của góc C cắt AB tại N.1)chứng minh tam giác AMN cân và MN song song với BC.2)gọi I là trung điểm của BC.E là giao điểm của CM và BN.chứng minh A;E;I thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
*AMN cân
Vì t/g ABC cân tại A (gt)
=>^B=^C
Do đó: ^ABM=^ACN
Xét t/ABM và t/gACN có
góc ^A chung
AB=AC ( vì t/g ABC cân)
^ABM=^ACN (cmt)
Nên t/gABM=t/gACN (g.c.g)
=>AM=AN (2 cạnh tương ứng = nhau)
=> tam giác ANM cân
*MN//BC
Từ tam giác ANM cân nên => ^A+^ANM+^AMN=180o
tam giác ABC cân nên=>^A+^B+^C=180o
Mà ^B=^C
^ANM=^AM
Nên: ^C=^ANM
=>^MCN=^ANM
Mà 2 góc này lại ở vị trí so le trong
Do đó MN//BC (đpcm)
b)
Vì t/g ABC cân tại A
^ABC=^ACB
Mà BM là tia p/g của ^ABC
CN là tia p/g của ^ACB
do đó: ^MBC=^NCB
=> tam giác EBC cân tại E
Xét t/g AEB và t/g AEC có:
AB=AC (vì t/g ABC cân)
^ABM=^ACN (cmt)
=BE=CE (EBC cân)
=> t/gAEB=t/gAEC(c.g.c)
=>^BAE=^CAE (2 góc tương ứng = nhau)
Do đó AE là tia phân giác của t/gBAC (1)
Xét t/g AIB và t/gAIC có
AB=AC ( vì t/g ABC cân)
IB=IC (I là trung điểm BC)
=>tam giác AIB=t/gAIC (c.g.c)
=>^IAB=^IAC (2 góc tương ứng = nhau)
Do đó:AI là tia phân giác của ^BAC (2)
Từ (1) và (2) => A,I,E thằng hàng ( 2 tia phân giác của 1 góc thì thẳng hàng).
a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc HAB chung
=>ΔAHB=ΔAKC
=>AH=AK
b:
Xét ΔABC có
BH,CK là đường cao
BH cắt CK tại I
=>I là trực tâm
=>AI vuông góc BC tại M
Xét ΔKBC vuông tạiK và ΔHCB vuông tại H có
BC chung
KC=HB
=>ΔKBC=ΔHCB
=>góc IBC=góc ICB
=>ΔIBC cân tại I
mà IM là đường cao
nên IM là phân giác
c: Xet ΔBAC có AK/AB=AH/AC
nên KH//BC
Ta có \(\Delta ABC\)cân tại A
=> AB = AC
và \(\widehat{ABC}=\widehat{ACB}\)
Lại có \(\hept{\begin{cases}\widehat{ABM}=\widehat{MBC}\\\widehat{ACN}=\widehat{BCN}\end{cases}}\left(gt\right)\)
=> \(\widehat{ABC}-\widehat{MBC}=\widehat{ACB}-\widehat{BCN}\)
=> \(\widehat{ABM}=\widehat{ACN}\)
+) Xét \(\Delta AMC\)và \(\Delta ANB\)có
\(\widehat{A}\) : chung
AC= AB (cmt)
\(\widehat{ABM}=\widehat{ACN}\) (cmt)
=> \(\Delta AMC\)= \(\Delta ANB\) (g-c-g)
=> AM= AN ( 2 canh tương ứng)
=> \(\Delta AMN\) cân tại A
b, Theo câu a, ta có :
\(\widehat{ANM}=\frac{180^o-\widehat{A}}{2}\left(1\right)\)
Lại có \(\Delta ABC\) cân tại A
=> \(\widehat{ABC}=\frac{180^o-\widehat{A}}{2}\left(2\right)\)
Từ (1) và (2) => \(\widehat{ANM}=\widehat{ABC}\)
Mà 2 góc này ở vị trí đồng vị
=> MN // BC
Xin lỗi nhé mình chưa nghĩ ra câu c