Giải hệ phương trình :
\(\hept{\begin{cases}\left(x+\sqrt{x^2+2012}\right)\left(y+\sqrt{y^2+2012}\right)=2012\\x^2+z^2-4\left(y+z\right)+8=0\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2)
sử dụng phương pháp nhân liên hợp ở pt (1) ta được
\(\hept{\begin{cases}x+\sqrt{2012+x^2}=\sqrt{y^2+2012}-y\\y+\sqrt{y^2+2012}=\sqrt{x^2+2012}-x\end{cases}}\)
cộng 2 vế lại được x=-y
rồi sao?? mik đíu hiểu pt 2 lôi z ở đâu
Ôi trời nhiều thía ? làm từng câu một ha !
a \(\hept{\begin{cases}\left(x+5\right)\left(y-2\right)=\left(x+2\right)\left(y-1\right)\\\left(x-4\right)\left(y+7\right)=\left(x-3\right)\left(y+4\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}xy-2x+5y-10=xy-x+2y-2\\xy+7x-4y-28=xy+4x-3y-12\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-x+3y=8\\3x-y=16\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-3x+9y=24\\3x-y=16\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-3x+9y=24\\3x-y-3x+9y=16+24\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-3x+9y=24\\8y=40\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=7\\y=5\end{cases}}\)
b, ĐKXĐ \(x\ne\pm y\)
Đặt \(\frac{1}{x+y}=a\) và \(\frac{1}{x-y}=b\)(a và b khác 0)
Ta có hệ \(\hept{\begin{cases}a-2b=2\\5a-4b=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2a-4b=4\\5a-4b=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2a-4b=4\\5a-4b-2a+4b=3-4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2a-4b=4\\3a=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=-\frac{1}{3}\\b=-\frac{7}{6}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x+y}=-\frac{1}{3}\\\frac{1}{x-y}=-\frac{7}{6}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=-3\\x-y=-\frac{6}{7}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y-x+y=-3+\frac{6}{7}\\x-y=-\frac{6}{7}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2y=-\frac{15}{7}\\x-y=-\frac{6}{7}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-\frac{27}{14}\\y=-\frac{15}{14}\end{cases}}\)
a) \(\hept{\begin{cases}\left(x-1\right)\left(2x+y\right)=0\\\left(y+1\right)\left(2y-x\right)=0\end{cases}}\)
\(\cdot x=1\Rightarrow\hept{\begin{cases}0=0\\\left(y+1\right)\left(2y-1\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}0=0\\y=-1;y=\frac{1}{2}\end{cases}}\)
\(\cdot y=-1\Rightarrow\hept{\begin{cases}\left(x-1\right)\left(2x-1\right)=0\\0=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1;x=\frac{1}{2}\\0=0\end{cases}}\)
\(\cdot x=2y\Rightarrow\hept{\begin{cases}\left(2y-1\right)5y=0\\0=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=0\Rightarrow x=0\\y=\frac{1}{2}\Rightarrow x=1\end{cases}}\)
\(y=-2x\Rightarrow\hept{\begin{cases}0=0\\\left(1-2x\right)5x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\Rightarrow y=-1\\x=0\Rightarrow y=0\end{cases}}\)
b) \(\hept{\begin{cases}x+y=\frac{21}{8}\\\frac{x}{y}+\frac{y}{x}=\frac{37}{6}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\\left(\frac{21}{8}-y\right)^2+y^2=\frac{37}{6}y\left(\frac{21}{8}-y\right)\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\2y^2-\frac{21}{4}y+\frac{441}{64}=-\frac{37}{6}y^2+\frac{259}{16}y\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\1568y^2-4116y+1323=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{8}\\y=\frac{9}{4}\end{cases}}hay\hept{\begin{cases}x=\frac{9}{4}\\y=\frac{3}{8}\end{cases}}\)
c) \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\\\frac{2}{xy}-\frac{1}{z^2}=4\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{z^2}=\left(2-\frac{1}{x}-\frac{1}{y}\right)^2\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x-y\right)^2=-4x^2y^2+2xy\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}8x^2y^2-4x^2y-4xy^2+x^2+y^2-2xy+2xy=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}4x^2y^2-4x^2y+x^2+4x^2y^2-4xy^2+y^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x\right)^2+\left(2xy-y\right)^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=\frac{-1}{2}\end{cases}}\)
d) \(\hept{\begin{cases}xy+x+y=71\\x^2y+xy^2=880\end{cases}}\). Đặt \(\hept{\begin{cases}x+y=S\\xy=P\end{cases}}\), ta có: \(\hept{\begin{cases}S+P=71\\SP=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P\left(71-P\right)=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P^2-71P+880=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S=16\\P=55\end{cases}}hay\hept{\begin{cases}S=55\\P=16\end{cases}}\)
\(\cdot\hept{\begin{cases}S=16\\P=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=16\\xy=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y\left(16-y\right)=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y^2-16y+55=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=5\\y=11\end{cases}}hay\hept{\begin{cases}x=11\\y=5\end{cases}}\)
\(\cdot\hept{\begin{cases}S=55\\P=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=55\\xy=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y\left(55-y\right)=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y^2-55y+16=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{55-3\sqrt{329}}{2}\\y=\frac{55+3\sqrt{329}}{2}\end{cases}}hay\hept{\begin{cases}x=\frac{55+3\sqrt{329}}{2}\\y=\frac{55-3\sqrt{329}}{2}\end{cases}}\)
e) \(\hept{\begin{cases}x\sqrt{y}+y\sqrt{x}=12\\x\sqrt{x}+y\sqrt{y}=28\end{cases}}\). Đặt \(\hept{\begin{cases}S=\sqrt{x}+\sqrt{y}\\P=\sqrt{xy}\end{cases}}\), ta có \(\hept{\begin{cases}SP=12\\P\left(S^2-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\P\left(\frac{144}{P^2}-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\2P^4+28P^2-144P=0\end{cases}}\)
Tự làm tiếp nhá! Đuối lắm luôn
a) \(\hept{\begin{cases}\left(x+1\right)\left(y+1\right)=8\\x\left(x+1\right)+y\left(y+1\right)+xy=17\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y+xy=7\\x^2+y^2+x+y+xy=17\end{cases}}\)
Dat \(\hept{\begin{cases}xy=P\\x+y=S\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}S+P=7\\S^2+S-P=17\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}P=7-S\\S^2+S-\left(7-S\right)=17\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}P=7-S\\S^2+2S=24\end{cases}}\)
\(\hept{\begin{cases}S=-6\\P=13\\S=4;P=3\end{cases}}\)
b)
\(x^3+y^3=\left(x^2+y^2\right)\sqrt{x^2-xy+y^2}\)
\(\Leftrightarrow\left(x^3+y^3\right)^2=\left(x^2+y^2\right)^2.\left(x^2-xy+y^2\right)\)
\(\Leftrightarrow\left(x+y\right)^2.\left(x^2-xy+y^2\right)^2=\left(x^2+y^2\right)^2.\left(x^2-xy+y^2\right)\)
\(\Leftrightarrow\left(x+y\right)^2.\left(x^2-xy+y^2\right)=\left(x^2+y^2\right)^2\)
\(\Leftrightarrow\left(x^3+y^3\right)\left(x+y\right)=\left(x^2+y^2\right)^2\)
\(\Leftrightarrow x^4+x^3y+xy^3+y^4=x^4+y^4+2x^2y^2\)
\(\Leftrightarrow x^3y+xy^3-2x^2y^2=0\)
\(\Leftrightarrow xy\left(x^2-2xy+y^2\right)=0\)
\(\Leftrightarrow\sqrt{4x-3}.\left(x-y\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{4x-3}=0\\\left(x-y\right)^2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}4x-3=0\\x-y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{3}{4}\\x=y\end{cases}}\)
Xét trường hợp:
Với x=3/4
=>\(x=\frac{3}{4}\Leftrightarrow y.\frac{3}{4}=0\Leftrightarrow y=0\)
Với: \(x=y\)
Có: \(xy=\sqrt{4x-3}\Leftrightarrow x^2y^2=4x-3\Leftrightarrow x^4-4x+3=0\Leftrightarrow x\left(x^3-1\right)-3\left(x-1\right)=0\)\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x-1\right)+2x\left(x-1\right)+3\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-1\right)\left(x^2+2x+3\right)=0\)( vì x^2+2x+3 luôn dương. Tự c/m nhé )
\(\Leftrightarrow x-1=0\Leftrightarrow x=1\)\(\Leftrightarrow x=y=1\)
KL:.................................
\(\hept{\begin{cases}\left(x+\sqrt{x^2+2012}\right)\left(y+\sqrt{y^2+2012}\right)=2012\left(1\right)\\x^2+z^2-4\left(y+z\right)+8=0\left(2\right)\end{cases}}\)
Ta có:(1) \(\Leftrightarrow\left(x+\sqrt{x^2+2012}\right)\left(y+\sqrt{y^2+2012}\right)\left(\sqrt{y^2+2012}-y\right)\)\(=2012\left(\sqrt{y^2+2012}-y\right)\)(Do \(\sqrt{y^2+2012}-y\ne0\forall y\))
\(\Leftrightarrow2012\left(x+\sqrt{x^2+2012}\right)=2012\left(\sqrt{y^2+2012}-y\right)\)
\(\Leftrightarrow x+\sqrt{x^2+2012}=\sqrt{y^2+2012}-y\)\(\Leftrightarrow x+y=\sqrt{y^2+2012}-\sqrt{x^2+2012}\)
\(\Leftrightarrow x+y=\)\(\frac{\left(\sqrt{y^2+2012}+\sqrt{x^2+2012}\right)\left(\sqrt{y^2+2012}-\sqrt{x^2+2012}\right)}{\sqrt{y^2+2012}+\sqrt{x^2+2012}}\)
\(\Leftrightarrow x+y=\frac{y^2-x^2}{\sqrt{y^2+2012}+\sqrt{x^2+2012}}\)\(\Leftrightarrow\left(x+y\right)\frac{\sqrt{y^2+2012}-y+\sqrt{x^2+2012}+x}{\sqrt{y^2+2012}+\sqrt{x^2+2012}}=0\)
Do \(\hept{\begin{cases}\sqrt{y^2+2012}>\sqrt{y^2}=\left|y\right|\ge y\forall y\\\sqrt{x^2+2012}>\sqrt{x^2}=\left|x\right|\ge-x\forall x\end{cases}}\)\(\Rightarrow\sqrt{y^2+2012}-y+\sqrt{x^2+2012}+x>0\forall x,y\Rightarrow x+y=0\)
\(\Rightarrow y=-x\)
Thay y = -x vào (2), ta được: \(x^2+z^2+4x-4z+8=0\)
\(\Leftrightarrow\left(x+2\right)^2+\left(z-2\right)^2=0\Leftrightarrow\hept{\begin{cases}x=-2\\z=2\end{cases}}\Rightarrow y=-x=2\)
Vậy hệ có nghiệm \(\left(x;y;z\right)=\left(-2;2;2\right)\)