Tìm các số tự nhiên x, y biết:
a)(2x2 + 1) . (x - 1) . (x + 2) _< 0
b)x2016 + 2013y = 2015
MK ĐANG CẦN GẤP CẢM ƠN TRƯỚC MẤY BẠN LÀM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x²-3x+2=6
=>x²-3x=4
=>x.(x-3)=4
=>x và x-3 thuộc Ư(4)
Làm nốt nhé. Bạn chia TH ra thì hai cái này cùng dấu và tính
d. 2x2(x - y) + 2y(y - x)
= 2x2(x - y) - 2y(x - y)
= (2x2 - 2y)(x - y)
= 2(x2 - y)(x - y)
e. 5a2b(a - 2b) - 2a(2b - a)
= 5a2b(a - 2b) + 2a(a - 2b)
= (5a2b + 2a)(a - 2b)
= a(5ab + 2)(a - 2b)
f. 4x2y(x - y) + 9xy2(x - y)
= (4x2y + 9xy2)(x - y)
= xy(4x + 9y)(x - y)
g. 50x2(x - y)2 - 8y2(y - x)2
= 50x2(x2 - 2xy + y2) - 8y2(y2 - 2xy + x2)
= 50x2(x2 - 2xy + y2) - 8y2(x2 - 2xy + y2)
= 50x2(x - y)2 - 8y2(x - y)2
= (50x2 - 8y2)(x - y)2
= 2(25x2 - 4y2)(x - y)2.
\(\left(x+3\right).y=6\Rightarrow\left(x+3\right).y-6=0\)
\(\Rightarrow\hept{\begin{cases}x+3=0\\y-6=0\end{cases}\Rightarrow\hept{\begin{cases}x=-3\\y=6\end{cases}}}\)
\(\left(x+1\right).\left(y-2\right)=12\Rightarrow\left(x+1\right).\left(y-2\right)-12=0\)\(\Rightarrow\hept{\begin{cases}x+1=6\\y-2=2\end{cases}\Rightarrow\hept{\begin{cases}x=5\\y=4\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x+1=3\\y-2=4\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=6\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x+1=1\\y-2=12\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=14\end{cases}}}\)
( x + 3 ) . y = 6
=> ( x + 3 ) . y = 1 . 6 = 6 . 1 = -1 . ( - 6 ) = -6 . ( -1 )
= 2 . 3 = 3 . 2 = - 2 . ( -3 ) = -3 . ( - 2 )
x + 3 | 1 | 6 | -1 | -6 | 2 | 3 | -2 | -3 |
y | 6 | 1 | -6 | -1 | 3 | 2 | -3 | -2 |
x | -2 | 3 | -4 | -9 | -1 | 0 | -5 | -6 |
y | 6 | 1 | -6 | -1 | 3 | 2 | -3 | -2 |
Vậy các cặp ( x,y ) thỏa mãn là : ( -2 , 6 ) ; ( 3 , 1 ) ; ( -4 , -6 ) ; ( -9 , -1 ) ; ( -1 ,3 ) ; ( 0 , 2 ) ; ( -5 , -3 ) ; ( -6 , -2 )
mk kko nhớ cách làm của lớp 6 nữa nhưng mmk sẽ thử chút sai thì đừng ném đá hé!!!!
\(x-3-y(x+2)=0\)
do \(x,y\in \mathbb{N}\)
nên \(\Rightarrow\hept{\begin{cases}x-3=0\\y\left(x+2\right)=0\end{cases}\Rightarrow}\hept{\begin{cases}x=3\\y=0\end{cases}}\)
a) Có \(\left|x-3y\right|^5\ge0\);\(\left|y+4\right|\ge0\)
\(\rightarrow\left|x-3y\right|^5+\left|y+4\right|\ge0\)
mà \(\left|x-3y\right|^5+\left|y+4\right|=0\)
\(\rightarrow\left\{{}\begin{matrix}\left|x-3y\right|^5=0\\\left|y+4\right|=0\end{matrix}\right.\)
\(\rightarrow\left\{{}\begin{matrix}x=3y\\y=-4\end{matrix}\right.\)
\(\rightarrow\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\)
b) Tương tự câu a, ta có:
\(\left\{{}\begin{matrix}\left|x-y-5\right|=0\\\left(y-3\right)^4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=y+5\\y=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=3\end{matrix}\right.\)
c. Tương tự, ta có:
\(\left\{{}\begin{matrix}\left|x+3y-1\right|=0\\\left|y+2\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1-3y\\y=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=-2\end{matrix}\right.\)
a. \(\left|x-3y\right|^5\ge0,\left|y+4\right|\ge0\Rightarrow\left|x-3y\right|^5+\left|y+4\right|\ge0\) \(\Rightarrow VT\ge VP\)
Dấu bằng xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left|x-3y\right|^5=0\\\left|y+4\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3y\\y=-4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\) Vậy...
b. \(\left|x-y-5\right|\ge0,\left(y-3\right)^4\ge0\Rightarrow\left|x-y-5\right|+\left(y-3\right)^4\ge0\) \(\Rightarrow VT\ge VP\)
Dấu bằng xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left|x-y-5\right|=0\\\left(y-3\right)^4=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=y+5\\y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=3\end{matrix}\right.\) Vậy ...
c. \(\left|x+3y-1\right|\ge0,3\cdot\left|y+2\right|\ge0\Rightarrow\left|x+3y-1\right|+3\left|y+2\right|\ge0\) \(\Rightarrow VT\ge VP\) Dấu bằng xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left|x+3y-1\right|=0\\3\left|y+2\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1-3y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-\left(-2\right)\cdot3=7\\y=-2\end{matrix}\right.\) Vậy...
2xy - x + 2y = 13
\(\Leftrightarrow\) 2y(x + 1) - x - 1 = 12
\(\Leftrightarrow\) (2y - 1)(x + 1) = 12
Vì y là số tự nhiên 2y - 1 là ước lẻ của 12. Lại có x + 1 là số tự nhiên nên 2y - 1 là số tự nhiên \(\Rightarrow2y-1\in\left\{1;3\right\}\). Ta có bảng sau:
2y - 1 | 1 | 3 |
x + 1 | 12 | 4 |
y | 1 | 2 |
x | 11 | 3 |
\(2xy-x+2y=13\)
\(x\left(2y-1\right)+2y-1=12\)
\(x.\left(2y-1\right)+\left(2y-1\right)=12\)
\(\left(2y-1\right).\left(x+1\right)=12\)
\(\Rightarrow2y-1,x+1\inƯ\left(12\right)=\left\{\pm1,\pm2,\pm3,\pm4,\pm6,\pm12,\right\}\)ư
mà 2y-1 là số lẻ =>\(2y-1\in\left\{\pm1,\pm3\right\}\)
=> \(x+1\in\left\{\pm12,\pm4\right\}\)
đến đây tự tính nha =)
a)Ta có:\(\left(2x^2+1\right)\left(x-1\right)\left(x+2\right)\le0\Rightarrow\left(x-1\right)\left(x+2\right)\le0\)(Do\(2x^2+1>0\)
suy ra x-1 và x+2 trái dấu
Mà x-1<x+2
\(\Rightarrow\hept{\begin{cases}x-1\le0\Rightarrow x\le1\\x+2\ge0\Rightarrow x\ge-2\end{cases}}\)
\(\Rightarrow-2\le x\le1\)
b)Ta có Nếu \(x\ge2\Rightarrow x^{2016}\ge2^{2016}>2015\left(L\right)\)
Do đó x<2 mà\(x\inℕ\)
\(\Rightarrow x\in\left\{0;1\right\}\)
Với x=0 thì y=2015/2013(Loại)
Với x=1 thì y=2014/2013(Loại)
Vậy...............
Bài giải
a, \(\left(2x^2+1\right)\left(x-1\right)\left(x+2\right)\le0\)
Do \(\left(2x^2+1\right)\ge0\)
Nên để tích trên bé hơn hoặc bằng 0 thì \(\left(x-1\right)\) và \(\left(x+2\right)\) trái dấu hoặc bằng 0
Mà \(x-1< x+2\)
\(\Rightarrow\hept{\begin{cases}x-1< 0\\x+2\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\le1\\x\ge-2\end{cases}}\Rightarrow\text{ }-2\le x\le1\)
Mà \(x\in N\text{ }\Rightarrow\text{ }x\in\left\{0\text{ ; }1\right\}\)