giai phuong trinh nghiem nguyen:x^4+x^2-y^2-y+20=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2xy-2x-2y=4\)
=> \(xy-x-y=2\)
=> \(x\left(y-1\right)-\left(y-1\right)=3\)
=> \(\left(x-1\right)\left(y-1\right)=3\)
Do x,y là số nguyên nên x-1 và y-1 là ước của 3. Ta có bảng sau
x-1 | -3 | -1 | 1 | 3 |
x | -2 | 0 | 2 | 4 |
y-1 | -1 | -3 | 3 | 1 |
y | 0 | -2 | 4 | 2 |
Vậy....
Nhân cả 2 vế của pt với 4 ta đc 4x2+4y2-4x-4y=32
Suy ra (2x-1)2+(2y-1)2=34 mà 34=52+32
Nên (2x-1),(2y-1) thuộc tập hợp (5,3),(-5,-3),(-5,3),(5,-3) giải ra ta tìm đc x,y
4( X*2 +Y*2 -x-y)= 4*8=32
4x^2-4x+1+4y^2-4y+1=34
(2x-1)^2+(2y-1)^2=34
=> pt a^2+b^2=34
=>1) l a l=3, b=l 5 l,2) l a l=5, b=l 3 l
1) 2x-1=a=(+/-)3 => x=2, x=1
2y-1=b=(+/-)5=> y=3, y=-2
tuong tu 2)y=2, y=1,x=3, x=-2
a, Đặt \(x^2=t\left(t\ge0\right)\)
Khi đó \(PT< =>t^1+4t-5=0\)
\(< =>t^2-1+4t-4=0\)
\(< =>\left(t-1\right)\left(t+1\right)+4\left(t-1\right)=0\)
\(< =>\left(t-1\right)\left(t+5\right)=0\)
\(< =>\orbr{\begin{cases}t=1\left(tm\right)\\t=-5\left(loai\right)\end{cases}}\)
\(< =>x^2=1< =>\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)
Vậy ...
Thay m = 2 vào , ta có :
\(PT< =>x^2-2\left(2+1\right)x+2^2+3.2-4=0\)
\(< =>x^2-6x+6=0\)
\(< =>\left(x^2-6x+9\right)-\sqrt{3}^2=0\)
\(< =>\left(x-3-\sqrt{3}\right)\left(x-3+\sqrt{3}\right)=0\)
\(< =>\orbr{\begin{cases}x=3+\sqrt{3}\\x=3-\sqrt{3}\end{cases}}\)
a) Để phương trình có nghiệm kép thì \(\Delta=0\)
<=> \(m^2-4=0\)
<=> \(\orbr{\begin{cases}m=2\\m=-2\end{cases}}\)
+) Với m = 2 thì phương trình có nghiệm kép là (-1)
+) Với m = -2 thì phương trình có nghiệm kép là (1)
b) Có : \(\Delta=b^2-4ac=9-4.2.\left(-5\right)=49>0\)
Suy ra phương trình có 2 nghiệm phân biệt (x1;x2) là (5/2;-1)
bạn chơi roblox à
\(x^4+x^2-y^2-y+20=0\)
<=> x2(x2+1)-y(y+1)=-20