Gía trị của x thỏa mãn: (2x + 3)(x + 1)2 -(2x + 3)(2x - 3)=0 ( Nhập kết quả dưới dạng phân số tối giản)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\left(2x+1\right)^2\ge0;\left|y-1,2\right|\ge0\left(\forall x;y\in Z\right)\)
\(\Rightarrow\left(2x+1\right)^2+\left|y-1,2\right|\ge0\left(\forall x;y\in Z\right)\)
Mà \(\left(2x+1\right)^2+\left|y-1,2\right|=0\)
\(\Rightarrow\hept{\begin{cases}2x+1=0\\y-1,2=0\end{cases}\Rightarrow\hept{\begin{cases}2x=-1\\y=0+1,2\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{-1}{2}\\y=1,2\end{cases}}}\)
\(\Rightarrow x+y=\frac{-1}{2}+1,2=0,7\)
Vì: (2x + 1)2 và |y - 1,2| đều \(\ge\)0 nên (2x + 1)2 + |y - 1,2| \(\ge\)0
Mà: (2x + 1)2 + |y - 1,2| = 0 => 2x + 1 = 0 và y - 1,2 = 0 => x = -0,5 và y = 1,2
=> x + y = (-0,5) + 1,2 = 0,7
Phân số đó là: 0,7
Vì (2x+1)^2 và |y-1,2| đều >= 0 nên (2x+1)^2 + |y-1,2| >= 0
Mà (2x+1)^2 + |y-1,2| = 0 => 2x+1 = 0 và y-1,2 = 0 => x = -0,5 và y=1,2
=> x+y = -0,5 +1,2 = 0,7
k mk nha
Vì \(\hept{\begin{cases}\left(2x+1\right)^2\ge0\\\left|y-1,2\right|\ge0\end{cases}}\)nên \(\left(2x+1\right)^2+\left|y-1,2\right|=0\)khi và chỉ khi:
\(\hept{\begin{cases}\left(2x+1\right)^2=0\\\left|y-1,2\right|=0\end{cases}\Leftrightarrow}\hept{\begin{cases}2x+1=0\\y-1,2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-\frac{1}{2}\\y=1,2\end{cases}}\)
=>Giá trị của x+y là: \(-\frac{1}{2}+1,2=0,7\)
Vậy x+y=0,7
(2x-3)=42
=>2x-3=4 hoặc 2x-3=-4
2x =7 hoặc 2x =-1
x =7/2 hoặc x=-0,5
Mà x<0 nên x=-0,5
ờ đúng ruj