1 . Cho tam giác ABC cân tại A. Gọi D, E, P lần lượt là trung điểm của AB, AC
và BC. Trên tia đối của tia CE lấy điểm M sao cho CM = CE. Chứng minh:
a) Tứ giác BDEP là hình bình hành.
b) Tứ giác CDPM là hình bình hành.
c) P là trọng tâm của tam giác BDM
2 .
Cho tam giác nhọn ABC. Gọi điểm M là trung điểm của đoạn thẳng BC. Từ điểm M vẽ các đường thẳng song song với AC và AB, các đường thẳng song song đó lần lượt cắt AB và AC tại D và E.
1) Chứng minh tứi giác ADME là hình bình hành.
2) Tam giác ABC cần thêm điều kiện gì thì tứ giác ADME là hình chữ nhật, hình vuông?
3) Chứng minh diện tích của tam giác ADE = \(\frac{1}{4}\) diện tích tam giác ABC.