cho ax+by+cz=0 và a+b+c =2019.Tính
A=bc(x-y)^2+ac(x-z)^2+ab(x-y)^2/ax^2+by^2+cz^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Từ \(ax+by+cz=0\Rightarrow (ax+by+cz)^2=0\)
\(\Leftrightarrow a^2x^2+b^2y^2+c^2z^2=-2(axby+axcz+bycz)\)
\(=-2(bcyz+cazx+abxy)\)
Khi đó:
\(bc(y-z)^2+ca(z-x)^2+ab(x-y)^2=bc(y^2-2yz+z^2)+ca(z^2-2zx+x^2)+ab(x^2-2xy+y^2)\)
\(=(bcy^2+bcz^2+caz^2+cax^2+abx^2+aby^2)-(2bcyz+2cazx+2abxy)\)
\(=(bcy^2+bcz^2+caz^2+cax^2+abx^2+aby^2)+(a^2x^2+b^2y^2+c^2z^2)\)
\(=ax^2(a+b+c)+by^2(a+b+c)+cz^2(a+b+c)=(a+b+c)(ax^2+by^2+cz^2)\)
Do đó:
\(\frac{ax^2+by^2+cz^2}{bc(y-z)^2+ca(z-x)^2+ab(x-y)^2}=\frac{ax^2+by^2+cz^2}{(ax^2+by^2+c^2)(a+b+c)}=\frac{1}{a+b+c}=\frac{1}{\frac{1}{2019}}=2019\)
Ta có đpcm.
Rồng Con: bạn ghép nhóm thì nó ra thế á.
\(bcy^2+bcz^2+caz^2+cax^2+abx^2+aby^2+a^2x^2+b^2y^2+c^2z^2\)
\(=(bcy^2+aby^2+b^2y^2)+(bcz^2+caz^2+c^2z^2)+(cax^2+abx^2+a^2x^2)\)
\(=by^2(c+a+b)+cz^2(b+a+c)+ax^2(c+b+a)\)
\(=(a+b+c)(ax^2+by^2+cz^2)\)
Ý tưởng là bạn tìm những cái có cùng $ax^2,by^2,cz^2$ để nhóm với nhau, cuối cùng ra 1 biểu thức có chứa $ax^2+by^2+cz^2$ liên quan đến tử để triệt tiêu ^^
Bạn tham khảo bài tương tự tại đây:
Câu hỏi của Rồng Con - Toán lớp 8 | Học trực tuyến